
 
 

 

  

Abstract—Substructure mining is a well-established 
technique used frequently in drug discovery. Its aim is to 
discover and characterize interesting 2D substructures present 
in chemical datasets. The popularity of the approach owes a lot 
to the success of the structure-activity relationship practice, 
which states that biological properties of molecules are a result 
of molecular structure, and to expert medicinal chemists who 
tend to view, organize and treat chemical compounds as a 
collection of their substructural parts. Several substructure 
mining algorithms have been developed over the years to 
accommodate the needs of an ever changing drug discovery 
process. This paper reviews the most important of these 
algorithms and highlights some of their applications. Emphasis 
is placed on the recent developments in the field. 

I. INTRODUCTION 
he concept of pharmacophore, the specific arrangement 
of molecular features forming a necessary (but not 

sufficient) condition for biological activity [1], is central to 
drug design. Approaches aiming to recognize 
pharmacophores capitalize on the measured biological 
property values of a set of compounds to isolate, describe 
and use biologically significant chemical features. In 
practice, these methods mainly focus on information 
provided by sets of compounds known to bind strongly to 
the desired pharmaceutical target [2]. In order to refine the 
set of significant chemical features and improve the quality 
of the pharmacophore model sometimes the methods also 
take into account information provided by structurally 
similar compounds that fail to show activity [3], [4].  

Pharmacophore models and representations take various 
forms [1]. A number of approaches attempt to construct a 
model corresponding to the complete pharmacophore in 2D 
or 3D. Such approaches usually start by standardizing the 
chemical representation of compounds in a pre-processing 
step and determining the chemical properties of the various 
sites of each molecule. Following they proceed to identify 
substructures frequently occurring in a known ligand set. 
Other approaches adaptively calculate 2D or 3D descriptors 
and construct more abstract representations of known 
ligands. Since the representations are “learned” from the 
ligands it is assumed that some of the descriptors capture the 
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pharmacophore and therefore can be used as a general 
description of it for a variety of purposes. However, 
descriptor-based approaches are plagued by several 
limitations the most important being the loss of information 
associated with the reduction of a 2D topological graph (or 
3D-conformation) to a numerical vector, often a bit-vector 
also known as fingerprint [3], [5], [6].  

Approaches based on substructure mining focus on the 
identification of sizeable 2D structural commonalities 
among ligands. Depending on the availability of supporting 
biological information these commonalities may be referred 
to as scaffolds, privileged substructures or 2D 
pharmacophores. Compared to 2D or 3D descriptors these 
approaches have the advantage of preserving topological 
information related to chemical structure. Compared to 3D 
pharmacophore representations they have the clear 
advantage of simplicity and speed. This is mainly due to the 
dependence of 3D methods on the generation of multiple 
conformations for the molecules under investigation and the 
requirement for reliable superposition of the molecules [7]. 
In addition, and contrary to popular expectation, there is no 
clear performance advantage of 3D representations over 
their 2D counterparts. For example, Brown and Martin 
report that in the context of ligand-receptor binding 2D 
descriptors outperform 3D ones [8]. Similarly, in a study by 
Hessler et al. a MTree 2D pharmacophore model compared 
favorably with a 3D model in a virtual screening experiment 
[7].  

Once generated scaffolds can be used in a multitude of 
ways. Prime among them has historically been the task of 
biochemical screening data organization and interpretation 
[3], [4], [6], [9]-[11]. Equally popular are techniques 
employing scaffolds for virtual screening [2], [7], [12], [13]. 
These techniques use scaffolds to select a subset of 
compounds from a larger set e.g. via substructure search. 
More recently privileged substructures have been used for 
molecular library design and ligand design [7], [14]. Both 
approaches use scaffolds as templates to either select sets of 
molecules covering the pharmacologically interesting space 
defined by the scaffold (library design) or for virtually 
synthesizing compounds with high likelihood of exhibiting 
increased biological activity (ligand design). 

This paper reviews the topic of substructure mining from 
sets of chemical compounds and summarizes recent trends. 
Section II briefly describes some basic background 
information on graph theory and lists necessary definitions. 
Section III reviews some milestone techniques as well as the 
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present state of the art methods for substructure mining. The 
final section summarizes the methods described and 
describes our future work plan.  

II. BACKGROUND INFORMATION 

A. Graph Theory Fundamentals 
A graph G = (V, E) consists of a set of vertices V(G) and 

a set of edges E(G). In the case of labeled graphs both 
vertices and edges have identifiers, i.e. each vertex and edge 
has a label drawn from a predefined set of vertex labels LV 
and edge labels LE. Note that vertices and edges need not 
have unique labels, as is the case in molecular graphs where, 
for example, multiple vertices in any drug-like molecule 
have the C (carbon) label. Graphs can be directed or 
undirected. In directed graphs edges are ordered pairs of the 
vertices they connect where, in undirected, edges simply list 
the pair of vertices they connect. A vertex VI is said to be 
incident with an edge if one of the two endpoints of the edge 
is VI while an edge Ea is incident with an edge Eb if they 
have a vertex in common. Two vertices VI, VJ of graph G 
are connected, or adjacent, if there is an edge EIJ = (VI, VJ) 
∈ E(G). If there is a path P = (E1, E2,…, En) between every 
pair of vertices in a graph G, then G is a connected graph.  

A graph S = (Vs, Es) is a subgraph of G = (V, E) if and 
only if VS ∈ V and ES ∈ E. If ES contains all edges in E 
connecting the vertices in VS then S is an induced subgraph 
of G. An additional property of induced subgraphs is that it 
can be shown that there is a one-to-one mapping between 
the edges in ES and all edges in E incident on vertices in VS 
when VS is mapped on V. A clique is a special case of an 
induced subgraph where all its vertices are incident on each 
other. A maximum clique of a graph G is its largest clique.  

The problem of determining whether two graphs are 
identical is known as graph isomorphism [15]. In graph 
theoretic terms two graphs G1 = (V1, E1) and G2 = (V2, E2) 
are isomorphic if there is a mapping from V1 to V2 such that 
there exists a mapping for each edge in E1 to an edge in E2. 
A common induced subgraph between G1 and G2 is a graph 
CS that is an induced subgraph of both G1 and G2. The 
largest induced subgraph between G1 and G2 is known as the 
Maximum Common Induced Subgraph (MCIS). A related 
concept is that of Maximum Common Edge Subgraph 
(MCES) also known as Maximum Overlapping Set (MOS). 
An MCES is a subgraph consisting of the largest number of 
edges common to both G1 and G2[5].  

It is worth pointing out that the MCIS and MCES between 
two graphs may consist of several disconnected subgraphs 
as seen in fig. 1. The largest contiguous common 
substructure is known as the Maximum Common 
Substructure (MCS). Informally, the MCS of two graphs G1 
and G2 is the largest possible graph that is isomorphic to 
subgraphs of G1 and G2. 

Several algorithms have been proposed in the literature 
dealing with the problem of graph isomorphism. Among 

them the category of clique finding algorithms is one of the 
most popular [5], [15]. These methods rely on the 
calculation of a new graph, the compatibility graph CG, via 
a modular product operation on graphs G1 and G2. 
Following is the determination of the maximum clique in the 
CG by applying one of the many maximum clique 
algorithms available. The maximum clique of the CG has 
been shown to be equivalent to the MCIS of the two input 
graphs [16]. The modular product of the graphs G1 and G2, 
denoted as G1 ◊ G2, is defined in (1).  

)2()1()21( GxVGVGGV =◊  (1) 
where two vertices (ui, vi) and (uj, vj) are adjacent if: 

(ui, vi) ∈ E(G1) and (uj, vj) ∈ E(G2) or 
(ui, vi) !∈ E(G1) and (uj, vj) !∈ E(G2) 

Note that the vertices of CG consist of pairs of vertices, one 
vertex from each input graph. For a more detailed 
explanation please look at [5], [16]. 

B. Chemical Scaffolds, Privileged Substructures and 2D 
Pharmacophores: Definitions 
Chemical structures are typically represented as labeled, 

undirected graphs where atoms correspond to vertices, and 
chemical bonds are represented by edges. In this context, 
molecular fragments, or substructures, are induced 
subgraphs of molecular graphs. Scaffolds are molecular 
fragments defined in association to well-defined sets of 
compounds.  A scaffold derived from a compound set is a 
substructure present in all the compounds of the set. A 
common requirement imposed on scaffolds is that they are 
sufficiently large so as to be useful in characterizing the 
compounds in their corresponding sets. Often, a compound 
set scaffold is thought of as the MCS or MCIS of that set. It 
is worth noting that the problem of MCIS calculation in 
molecular graphs can also be solved using modular product 
based approaches provided that a provision is made to 
distinguish labeled vertices (atoms) and edges (bonds). More 
informally scaffolds can be thought of as the common, 
distinguishing “core” of a compound set. Scaffold-based 
analysis of a large compound set refers to the process of 
identifying frequently occurring substructures in the 
compounds of the set -the scaffolds- and the subsets 
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Figure 1: A pair of compounds from SM05 and their corresponding 
MCS (in blue) and MOS (in blue and red). 



 
 

 

associated with them. Privileged substructures are scaffolds 
positively correlated with favorable behavior, i.e. scaffolds 
present preferentially in compounds with a desired 
biological profile. 2D pharmacophores are those special 
privileged substructures that capture the key molecular 
features necessary for biological activity.  

III. SUBSTRUCTURE MINING APPROACHES 
Chemical substructure mining amounts to processing 
numerous undirected, labeled graphs and discovering 
common subgraphs of substantial size. In practice the 
methods take as input a set of known ligands and use some 
algorithm to detect substructures frequently occurring in 
large subsets of the ligands. There are two general categories 
of such methods: the first uses a predefined list of candidate 
scaffolds composed of a selection of substructures. 
Substructure searching is used to identify and select all 
candidate scaffolds found in numerous compounds in the set 
under investigation. In contrast, the methods of the second 
category adaptively learn the substructures from the 
compounds in the set. Each category of methods has some 
advantages but also some drawbacks. However, most recent 
approaches proposed belong to the second category since it 
has the clear advantage of detecting scaffolds specific, and 
possibly unique, to each input compound set supplied.  In 
the following sections we review several scaffold 
identification methods. The initial sections describe some of 
the early, simpler approaches that served as the stepping-
stones for later developments. More emphasis is placed on 
the presentation of the more recent methods reviewed in the 
later sections. 

A. Stigmata 
One of the earliest attempts in the area of frequent 

substructure identification has been the Stigmata algorithm 
designed to find structural commonalities in chemically 
diverse datasets [17]. The key feature of the algorithm is the 
generation of a “modal fingerprint” of the input chemical 
dataset. Initially Stigmata calculates molecular fingerprints 
for the chemical structures supplied. A bit of the modal 
fingerprint is set on if the corresponding descriptor key can 
be found in at least a certain portion of the entire collection 
of molecular fingerprints. The threshold value for turning a 
bit on or off is user defined, usually ranging between 0.5 
(half the chemical structures contain the key corresponding 
to the bit) and 1 (all the chemical structures containing the 
key corresponding to the bit). Post-processing of the modal 
fingerprint reveals the bits and their corresponding 
fragments that are common to the input chemical structures. 
A visual interface is typically employed to highlight the 
structural commonalities found. A limitation of the method 
is that it can only identify structural commonalities encoded 
as structural descriptors. This makes the method overly 
dependent on the choice of molecular fingerprint method 
used to describe molecules. 

B. Frameworks Analysis 
Another early approach is the so-called frameworks 

analysis proposed by Bemis and Murcko [12]. The method 
is designed to provide a “high-level overview” of gross 
structural features of substantial size, the so-called 
frameworks, present in a set of molecules. According to the 
method each molecule is dissected into three units: rings, 
linkers and side-chains. Rings are the cycles of the 
molecular graph while linkers are any substructures 
connecting two rings. Side-chains are the leftovers, e.g. any 
substructures that are not part of a ring or a linker. 
Frameworks are defined to be the union of rings and linkers 
[12]. The authors proposed two types of frameworks 
depending on whether atom or purely graph-based 
representations are used (fig. 2).   

The process generates a set of frameworks, one for each 
molecule. Duplicate frameworks are removed from the set 
and a count of the number of occurrences of each framework 
is kept. Bemis and Murcko originally used their method for 
discovering frameworks in a set of drugs with the intent of 
using them for the purposes of similarity searching and 
library design.  

An extension to the frameworks analysis method has been 
developed since then aiming to reduce the number of 
frameworks and generalize the resulting substructures. To 
achieve this, the frameworks are subjected to a Maximum 
Common Substructure (MCS) analysis and the MCS found 
is used to remove the molecules containing it from the 
dataset under investigation. The process of MCS extraction 
and molecule removal is repeated on the remaining 
compounds from the original dataset until a user-defined 
portion of the dataset has been removed [14]. This process 
reduces significantly the number of characteristic 
substructures needed to describe a set of molecules.  

A different variation of framework analysis, Scaffold-
Based Classification (SCA), has been proposed to classify 
compound libraries using scaffolds [9]. The novelty of SCA 
is mainly found in the introduction of the concept of scaffold 
complexity and the technique used to calculate the similarity 
of a compound to a scaffold. Unlike traditional frameworks 
analysis where scaffolds are used for substructure searching, 
SCA characterizes scaffolds further and uses those 
characteristics to sort them and form compound classes 
around them. This process eventually leads to increased 
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Figure 2.  Frameworks analysis of genistein (A). In a first step the 
molecule is dissected into 3 units: rings (red), linkers (blue) and 
side-chains (green). Frameworks are the unions of rings and 
linkers. Two types of frameworks were proposed: Frameworks 
with exact atoms (B) and purely graph-based frameworks (C). 



 
 

 

generality of scaffolds and thus fewer, larger and more 
diverse classes [9]. 

C. PhyloGenetic-Like Trees 
The extraction of MCS has also been employed in various 

other algorithms designed to identify privileged 
substructures for specific pharmaceutical projects. Nicolaou 
et al.[3] proposed the PhyloGenetic-Like Tree (PGLT) 
algorithm designed to identify chemical classes 
characterized by a chemical substructure from diverse 
screening datasets. The algorithm produces a dendrogram 
data structure where each node contains a set of molecules 
and a chemical fragment common to the molecules. The 
construction of the dendrogram is achieved via the following 
process: First, the root node containing the compounds to be 
analyzed is formed. Then the compounds in the node are 
clustered, the natural/interesting clusters are determined and 
an MCS extraction process is applied on each of those 
clusters. The MCS’s are then evaluated using some expert 
rules and those deemed interesting are used to create new 
nodes that are connected to the parent node. The new nodes 
are populated with the compounds of the parent node that 
contain the MCS characteristic of the node. The process 
iterates on each node that is sufficiently large. The end result 
is a hierarchy of chemical substructures found in the input 
dataset with smaller, more general substructures close to the 
root of the tree and larger, more specific substructures closer 
to the leaves. In its original implementation the algorithm 
was applied on the active portion of a screening dataset to 
identify chemical substructures frequently occurring among 
active compounds. The discovered substructures were 
matched with inactive compounds in order to assess whether 
they were indeed privileged, i.e. related to the activity 
observed or simply chance correlations.  

PGLT was probably the first algorithm for discovering 
privileged substructures sited in the literature were 
clustering and the MCS process played key roles. The 
process was indeed able to define a hierarchy of chemical 
substructures frequently occurring in a dataset and populate 
this dendrogram with volumes of screening data. However, 
the algorithm had poor performance and required lengthy 
times for constructing the dendrogram on large numbers of 
data. This was mainly due to the requirements of the MCS 
generation step and the repeated usage of clustering. PGLT 
has been used successfully in several occasions, among them 
by Bacha et al. [18] for mutagenicity rule extraction and 
Rodgers et al. [10] for the identification of chemical 
substructures related to bitterness. 

D. Distill 
An alternative approach that also forms a hierarchical 

organization of compounds using common substructures is 
that employed in the commercial package Distill [19], [20]. 
As in the PGLT algorithm each node in the constructed 
dendrogram represents a substructure and the compounds 
containing that substructure. Contrary to the PGLT Distill is 

bottom-up and as such it begins by forming leaf nodes out of 
all the compounds in the dataset to be analyzed. The process 
then computes the pair-wise similarity of all the nodes, 
merges the two closest ones to form a new node and iterates 
until only one node is left or a certain predefined criterion, 
such as node size, is met. Similarity between nodes is based 
on the actual MCS fragment extracted from the 
characteristic substructures of the two nodes. Note that the 
MCS extraction algorithm takes as input the characteristic 
substructures of each node and not the compounds of the 
node. This “shortcut” enables the algorithm to only extract 
MCS’s from pairs of substructures and avoid dealing with 
larger datasets at each node. The associated improvement in 
performance and savings in computational resources are 
compromised since the characteristic substructure of each 
node may not be the true MCS of the compounds in the 
node. However, even with this compromise the algorithm 
can only process a few hundred compounds in reasonable 
time since the requirement for performing all the pair-wise 
MCS extractions, on which similarity calculations are based, 
is both substantial and of order O(N2). Distill has been used 
by Shen [11] in creating the HAD system, a Hits Data 
Analysis decision support system designed to provide a 
structural overview of classes in a screening dataset and the 
associated activity statistics. 

E. ClassPharmer 
More recently a set of commercially available software 

tools for the identification of privileged substructures have 
been reported. These tools have been designed to break large 
sets of chemical compounds in groups sharing substantially 
large substructures. These characteristic substructures may 
be derived using MCS extraction [4], or via other 
approaches capable of detecting a Significant Common 
Substructure (SCS)[21] in a set of structurally similar 
compounds. ClassPharmer [4] is a non-hierarchical method 
designed to detect chemical families of compounds in a 
dataset defined by large common substructures. The tool 
uses graph-based analysis to derive molecular fragments that 
capture commonalities in a given ligand training set [14]. 
Essentially, the method detects approximations of all the 
potential MCS’s that could be derived from a chemical 
dataset and then employs an optimization procedure to select 
the subset of approximations/substructures that could be 
used to form clusters of compounds that satisfy a predefined 
minimum intra-cluster similarity criterion. Special care is 
made for selecting the subset of substructures that would 
result in the least number of singleton classes [4]. An MCS 
extraction process is used on each class to refine the initial 
approximations used to form the classification. The resultant 
classes of compounds and their representative MCS’s can be 
further analyzed through importation of activity data and 
extraction of structure-activity conclusions. Thus, privileged 
substructures in the analyzed dataset can be highlighted 
based on the biological properties of the compounds in the 



 
 

 

associated class. 
ChemTK [21] uses a similar approach for the 

classification of molecular datasets using SCS fragments. 
According to the method the classification is performed in 
two steps. The first step involves searching the full set of 
molecules for all unique structural fragments that are 
present. Various types of fragments can be identified 
including ring systems (single and fused rings, as well as 
connected groups of these) and branched fragments 
(structures created by combining one or more unbranched 
fragments). The second step is to form classes using the list 
of identified structures. Each fragment identified in the first 
step is considered as a potential new class, the members of 
which include each molecule having the particular fragment 
as part of its molecular structure. The final set of classes is a 
subset of this full collection, chosen so as both to minimize 
the number of singletons and to limit the level of 
redundancy in the final classes [21]. An optional MCS 
extraction step for each class is available to ensure the best 
possible chemical structure characterization of the classes.  

The limiting step of approximation-based approaches is 
the number of fragments generated that form the collection 
of potential classes.  The number is proportional to the 
complexity of the molecules in the data and can become 
very large even for data sets of modest size. Even so, and 
assuming that the approximations used are truly 
representative of the MCS’s the method is capable of 
processing chemical datasets of substantial size (ca 100k) 
given sufficient time on modern workstations [21]. 

F. RASCAL/SPINIFEX 
A different category of graph-based clustering methods 

has focused on defining and using graph-based similarity 
measures and implementing algorithms efficient enough to 
allow application on sizeable chemical datasets. A 
representative clustering algorithm of this type is Spinifex 
[6] based on the RASCAL graph-based similarity measure 
[5].  

In its simplest form graph-based similarity of two 
compounds may be some measure of their calculated MCS. 
For example, the Distill application described above uses the 
size of the MCS of two compounds as their actual similarity 
value. Typical MCS-based similarity requires that a pair of 
compounds share a single substantially large contiguous 
substructure in order to have a high similarity value. While 
this is intuitive there are cases where it leads to misleading 
results. For example, such method fails to capture the true 
similarity of the compounds in fig. 1 since the various 
identical components of the molecules are connected with 
different linkers [6]. To address this limitation of MCS-
based similarity Rapid Similarity CALculation (RASCAL) 
proposed the usage of the Maximum Overlapping Set 
(MOS) [5] that may consist of several, disconnected 
substructures, and thus, capture the global graph-based 
similarity of two molecules. 

RASCAL consists of two major components, graph 
matching where the MOS is identified, and similarity 
calculation. The graph matching procedure is based on the 
reduction of the MOS problem to the maximum clique 
problem. To achieve this the algorithm transforms the pair 
of input molecular graphs to their corresponding line -or 
edge- graphs. A line graph L(G1) is a graph whose vertices 
correspond to the edges of graph G1 and whose edges 
correspond to G1’s vertices. This transformation is followed 
by the calculation of the modular product of the line graphs 
and the detection of the maximum clique in the resulting 
compatibility graph. The isomorphism of the two line 
graphs, indicated by the cliques in the compatibility graph, 
has been proven to correspond to the MOS of the original 
graphs G1 and G2 [5]. The above principle does not hold for 
certain well-defined graph shapes and so RASCAL detects 
these problematic shapes and treats them differently. 
Discussing them is out of the scope of this paper and the 
interested reader is referred to the literature for more 
information. RASCAL uses several heuristics to improve its 
performance. Among them is “screening” used to exclude 
from expensive graph matching calculation pairs of 
molecules that cannot satisfy a user-defined similarity 
threshold. Also used are heuristics that simplify the modular 
graph by deleting nodes or edges based on the symmetry of 
certain molecular shapes and the resulting redundancy [16]. 
Upon calculation of the MOS between two molecules 
RASCAL uses (2) [5] for the calculation of their similarity 
value: 
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where NV is the number of vertices and NE is the number of 
edges of a chemical structure. 

Spinifex [6] uses RASCAL with an enhanced version of 
the similarity measure to calculate all pair-wise similarities 
between compounds in a dataset. The MOS implementation 
in Spinifex requires both atom and bond matching of the 
chemical graphs. Further, during a preprocessing step, the 
algorithm performs selected atom-typing, i.e. groups specific 
sets of atoms so that they are considered the same atom as in 
the case of halogens (F, Cl, Br, I), or differentiates 
occurrences of a single atom into two groups based on their 
expressed chemical properties as in the case of nitrogen 
which may (or may not) behave as a hydrogen bond donor. 
All calculated similarity values are stored in a proximity 
matrix. Following the calculation of the matrix a variety of 
clustering algorithms can be applied. The authors propose 
the usage of a hierarchical method, the Group-Average, 
which they have found to perform better in a series of tests.  

Comparisons using a test set indicated that the Spinifex 
approach outperformed clustering using MCS or fingerprint-
based similarity measures with respect to the number and the 
purity of the clusters produced as well as the number of 
singleton compounds. However, in practical terms the 
method is troubled by performance issues and can only be 



 
 

 

applied to small to medium size datasets, ca. 3000 
compounds. This is most notably due to the quadratic 
requirement imposed by the need to calculate a proximity 
matrix using MOS-based similarity. 

G. Feature Trees and MTrees 
Rarey and Dixon [22] have described FeatureTrees, an 

interesting version of a 2D-based topological descriptor with 
potential applications in substructure mining and scaffold-
based applications. Feature trees are essentially 2D 
representations of molecules designed to address the loss of 
information associated with linear representations of 
molecules at the cost of increased descriptor complexity. A 
feature tree is a graph whose nodes represent hydrophobic 
centers and functional groups of a molecule while its edges 
are modeled after the way these groups are linked together 
[13], [22]. The first step for creating a feature tree of a 
molecule is to identify the rings of the molecule. Single 
nodes represent ring centers and edges are drawn to connect 
them if the original rings were fused (e.g. shared 
atoms/edges). If after ring center nodes are added cycles can 
be found, the possible result of ring systems, those cycles 
are collapsed into single nodes representing their center. In 
this manner the new graph is guaranteed to be acyclic and 
thus simpler to manipulate. The next step of the algorithm is 
to traverse the molecule and add new nodes to the graph for 
each atom that has more than two bonds. Terminal atoms 
form a single node with the atom they are connected to. 
Edges are used to connect nodes that represent atom(s) 
connected in the molecule.  

The second part of feature tree construction deals with the 
definition of features and the labeling of nodes accordingly. 
At a first pass the algorithm traverses the acyclic graph and 
calculates steric and chemical features for each node. Steric 
features aim to describe the size of the node and include the 
number of atoms and an approximated van der Waals 
volume of the fragment. The chemical features of a node 
focus on its chemical properties that could be used for 
protein-ligand interactions. Chemical features are computed 
for a fixed number of interaction types and are stored in a 
data structure called the “interaction profile” of the node. In 
essence, the profile is an array where the i-th entry describes 
the ability of the node to form an interaction of type I [22].  

The resulting data structure is a simplified abstraction of 
molecules that preserves their topology and adds potential 
pharmacophore point information. Similarity between 
feature trees is calculated using specifically designed shape 
matching algorithms that exploit the acyclic nature of graphs 
and take into account the interaction profile of the nodes. 
Feature trees have been shown to be rather successful in 
grouping compounds having the same pharmacophore 
structure. Other uses include the prediction from a database 
of possible new lead molecules, often with substantially 
different molecular structure but sharing the same topology 
of pharmacophore points [23].  

Recently, an algorithm for combining the information 
from pairs of feature trees into a new tree has been proposed 
[7]. The process is based on chemically reasonable matching 
of corresponding functional groups as encoded by the 
feature trees. The nodes of the new tree represent the 
matches containing the features of the mapped subtrees 
while the edges are formed following the topologies of the 
input feature trees [7]. When presented with a set of input 
molecules the algorithm first converts them into their 
corresponding feature trees and then extracts a topological 
model by comparing those trees in a pair-wise fashion. The 
latter process begins by selecting a pair of feature trees, 
combining them to form a new tree and then repeating the 
process using as input the new tree with another feature tree 
of the initial set. Each resulting new tree is combined with 
one of the remaining input feature trees until all have been 
taken into account. The resulting model, called an MTree, is 
in fact a form of a fuzzy 2D pharmacophore represented by a 
tree data structure where the set of nodes capture local 
commonalities of the input feature trees and the set of edges 
their general -or global- topology. The novelty of the 
method can be found in its ability to extract MTree models 
from sets of structurally diverse molecules as opposed to the 
SCS/MCS approaches where the input molecules must share 
substantially large identical substructures. This is due to the 
intermediate abstraction step provided by the conversion of 
molecules to feature trees. Additionally weights can be 
introduced so that highly similar fragments in the input set 
result in MTree nodes of greater importance (i.e. increased 
weight). This property of MTrees enables the application of 
similarity measures where nodes with increased weight 
contribute more than other nodes. This is especially useful 
for the main proposed application for MTree models which 
is that of virtual screening [7], e.g. the comparison of an 
MTree model with a set of compounds, one at a time, and 
the selection of the most similar for further processing. 
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Figure 3.: Methotrexate and its corresponding feature tree. Feature 
trees collapse groups of atoms, such as rings, into single nodes. 
The nodes are categorized as hydrophobic (empty circles), 
hydrogen-bond donors (black), hydrogen bond acceptors (gray). 
The edges in a feature tree connect fragments of the original 
molecule sharing atoms or bonds. Adapted from [22].  



 
 

 

H. FSG and Other A Priori Based Methods 
An alternative approach for detecting chemical scaffolds 

based on the Apriori principle [24] has been proposed by 
several research groups [25]-[30]. Apriori, originally applied 
for finding frequent itemsets in market-basket datasets, 
states that if a given itemset does not satisfy a frequency 
threshold then no superset itemset can satisfy the threshold 
either [24]. The method follows a bottom-up approach, from 
simpler to more complex itemsets gradually eliminating 
those that do not meet the threshold criteria.   

A representative of these methods is Frequent SubGraph 
discovery (FSG), that takes as input a set of graphs D and a 
minimum support σ and finds all connected subgraphs that 
occur in at least σ% of the graphs in D [27]. FSG’s level-by 
level structure, starting from a complete enumeration of 
simple graphs and proceeding to candidate edge graphs of 

larger size is borrowed from Apriori’s complete enumeration 
of all frequent itemsets and the addition of single items one 
at a time [26].  

Analytically, FSG starts by enumerating small frequent 
subgraphs consisting of one and two edges and proceeds to 
find larger, candidate subgraphs by joining previously 
discovered smaller frequent subgraphs [26]. The size of the 
subgraphs is grown by adding one edge at a time. The set of 
candidate subgraphs is pruned by removing patterns with 
less than adequate frequency. FSG achieves high 
computational performance and is reported to analyze 
200,000 compounds in one hour at σ = 1%. This rate has 
been made feasible using sophisticated algorithms for 
canonical labeling of graphs to uniquely identify the various 
generated subgraphs without having to resort to 
computationally expensive graph- and subgraph-
isomorphism computations [26]. To the same end, FSG 
employs various optimizations for the generation of 
candidate subgraphs and during subgraph frequency 
counting. One consideration with the use of FSG is the value 
of σ. A low value is more likely to capture all the important 
substructures present in the dataset at the expense of 
generating very large numbers of results. Setting the value 
of σ high reduces the number of substructures found but 
risks loosing some of the potentially important ones.  

An extension to the FSG algorithm called Frequent 
Subgraph-based Classification (FSC) has recently been 
proposed with the goal to provide graph-based classification 
of sets of chemical compounds [27]. One of the key ideas of 
the algorithm is to decouple the substructure discovery 
process from the classification model construction step.  

FSC has three distinct steps: (i) feature generation, (ii) 
feature selection, and (iii) classification model construction. 
Feature generation takes place using the FSG algorithm. 
Feature selection aims to reduce the size of the substructure 
pool produced by the feature generation step while 
preserving all the information present. The selection scheme 
used is based on a sequential covering algorithm, an iterative 
approach that selects a feature and removes all compounds 
containing the feature at each step. The feature selected in 
each iteration is the one exhibiting the highest degree of 
accuracy [27]. Upon termination of the process the selected 
features are used to generate descriptor vectors for each of 
the compounds in the dataset D. The vectors produced are 
used for the construction of a classification model based on 
Support Vector Machines (SVM) although any of a number 
of classification methods can be used.  

In comparative tests the FSC method has shown its 
superiority over descriptor-based classification methods of 
chemical compounds using MACCS keys [31] and Daylight 
fingerprints [32] for molecular descriptor generation and 
SVM for classification. FSC was also shown to be more 
accurate than algorithms based on heuristic substructure 
discovery. This improved performance can be attributed to 
the usage of FSG and thus the complete set of frequent 

TABLE I 
SUBSTRUCTURE  MINING METHODS 

Name Description Points to note 

Stigmata Structural Descriptor-based; 
scaffolds are descriptors found 
in more than a user defined 
percentage of compounds  

Very fast; can only 
find substructures 
present in descriptor 
set. 

Frame 
Works 

Decomposes compounds in 
rings, linkers, side-chains; 
scaffolds formed by union of 
rings and linkers; significance 
assessed by frequency count 

Very fast; limited, 
strict definition of 
scaffolds; interesting 
extensions to rings 
cannot be detected.  

PGLT Combining descriptor-based 
compound clustering with MCS 
extraction; iterative process, 
generating a hierarchy of 
scaffolds populated with 
compounds 

Slow process, low 
throughput of 
compounds; 
thorough scaffold 
identification and 
related classes  

Distill Hierarchical, agglomerative 
clustering process using the 
size of pair-wise MCS as 
similarity value.  

Slow process, low 
throughput of 
compounds; MCS at 
higher hierarchy 
levels not 
guaranteed 

Class 
Pharmer 

Approximates MCS’s in a 
compound dataset using easily/ 
quickly derived substructures, 
eg. frameworks or ring systems; 
optimization method to form 
classes around scaffolds 

Medium-to-high 
throughput; 
dependency on the 
quality of the 
approximate MCS’s 
and the optimization 
method used. 

Spinifex Combing graph-based 
similarity calculated using 
thorough MOS technique and 
hierarchical agglomerative 
clustering. 

Slow, process, low 
throughput;  
thorough clustering 
process. 

F/MTrees Transform molecules into 
abstract, simpler, acyclic 
graphs; pairwise matching of 
graphs to produce model  

Increased generality; 
maybe too coarse for 
some datasets 

FSG Apriori principle; bottom-up 
approach starting from one and 
two edge graphs, combining 
them to form larger frequent 
subgraphs; finds complete set 
of substructures present in 
dataset. 

Dependency on user 
supplied attributes σ 
(support). 
Depending on σ 
results may miss 
important under-
represented 
fragment 



 
 

 

substructures present in a compound set [27]. 

IV. CONCLUSION 
In this paper we have reviewed several substructure 

mining methods currently in use in the drug discovery field 
following closely the evolution of this research domain. 
Table I summarizes the key aspects of the methods 
described. We have also referred to several usage examples 
that describe successful applications of discovered 
substructures for the organization and interpretation of 
chemical data as well as for compound selection and library 
design. Our future work will include exploring the 
combinations of abstractions of molecules such as feature 
trees with apriori-based methods in order to achieve 
increased performance and generality. Additionally we will 
be looking into the less explored area of scaffold-based 
ligand design.   
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