
 
 

 

  

Abstract— Protein classification in terms of fold recognition 
can be used to determine the structural and functional 
properties of newly discovered proteins. In this work we 
propose a method for sequence-based fold recognition which 
utilizes sequential pattern mining and is implemented using a 
three stage schema. In the first stage the training set is divided 
into subsets, each one containing proteins from the same fold 
only. Then, sequential pattern mining is applied in each of the 
subsets, generating a set of sequential patterns for every fold 
under consideration. In the second step, a scoring function 
evaluates the extracted sequential patterns in order to classify 
the proteins of the training set. A modification of the Simplex 
local optimization technique, that takes into account the 
confusion matrix produced by the training set, is employed to 
assign a weight factor to each fold, in order to maximize the 
accuracy on the training set. Finally, in the third step, the test 
proteins are classified using the sequential patterns extracted 
from the training set and the scoring function with the optimal 
fold weights, calculated from the training set. In order to 
validate the proposed method, an appropriate group of 
primary protein sequences were taken from the Protein Data 
Bank. When applying the above method without the use of the 
optimization step the obtained overall accuracy was 35.9%. 
When considering the three stage methodology, the overall 
accuracy was increased to 41.3%.  
 

I. INTRODUCTION 
tructure prediction is a challenging task and many 
different methods have been adopted to address it. 

Nowadays, we are presented with an exponentially 
increasing number of protein sequences. However, their 
structure and biochemical function remains unknown. 
Structure and function determination is a non-trivial task 
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even for small proteins, so theoretical and computational 
structure prediction techniques are very useful as they offer 
a way to relate those proteins to other proteins with known 
properties. By determining how sequences are related to 
known proteins we can make predictions of their structural, 
functional and evolutionary features and therefore classify 
them to the appropriate structural category [1].  

Proteins might have considerable structural similarities 
even when no evolutionary relationship of their sequences 
can be detected. This property, when there is similar 
structure but no obvious homology, is referred to as proteins 
are sharing the same fold. Methods developed to identify 
this structural relationship are referred to as fold recognition 
methods. Finding the fold category where a protein of 
unknown structure belongs is an indirect way to discover its 
structure, so fold recognition leads to structure prediction. 
We could identify two categories of methods in fold 
recognition, the prediction-based methods [2-3] and the 
structure-based methods [4-5]. Prediction-based methods 
estimate the secondary sequence of the target protein as a 
first step for fold recognition. So these methods use 
sequence information for both finding the secondary 
sequence and the correct fold. On the other hand, structure-
based methods differ from the first, since they do not use 
directly any sequence information to detect whether two 
proteins share a fold or not. Instead they create an energy 
function describing how well a probe sequence matches a 
target fold. Besides these two categories it is possible to use 
purely sequence-based methods [6] or combine different 
approaches [7]. 

Sequence-based methods are very common in fold 
recognition. Several machine learning techniques have been 
adopted to exploit primary or secondary sequence 
information, such as genetic algorithms [8], support vector 
machines [9] and hidden Markov models [10-12]. However, 
although significant improvement has been made, the 
accuracy of the existing methods remains low and there is 
the need for new methods contributing to this field. 

In this work, a novel method is presented for protein fold 
recognition employing data mining techniques and 
optimization algorithms. Data mining [13] is employed in 
the form of sequential pattern mining (SPM) [14]. Our 
method introduces several novelties. The employment of 
SPM for protein structure analysis offers the potential of 
discovering new knowledge in the form of patterns. An 
extracted sequential pattern might correspond to a 
functionally or structurally important protein region [15]. In 
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addition, our method uses only the protein’s primary 
structure for classification, whereas other similar approaches 
make use of the secondary [2], as well as the tertiary 
structures [16]. Primary structure is easier to be determined 
and can be easily found in many large databases publicly 
available (e.g. PDB, Swiss-Prot). Furthermore, the use of the 
optimization step increases significantly the fold recognition 
efficiency, compared to the case where only the SPM 
procedure is employed. As for training and testing we 
employed a low homology between proteins dataset. The 
classification results indicate that our method performs more 
than adequately in terms of accuracy and compares 
favorably with other similar approaches like the Sequence 
Alignment and Modeling (SAM) approach [10], which is 
widely considered as an effective approach for protein 
classification and fold recognition. 

II. MATERIALS AND METHODS 
The proposed method consists of three stages (Figure 1). 

In the first stage SPM is applied in the training dataset and 
generates a set of sequential patterns, for every fold under 
consideration. In the second step, a scoring function is 
employed that evaluates the extracted sequential patterns 
and classifies the proteins of the training set. Then, a 
modification of the Simplex local optimization technique 
[17], that takes into account the confusion matrix produced 
by the training set, is employed to assign a weight factor to 
each fold, in order to maximize the accuracy on the training 
set. Finally, in the third step, the test proteins are classified 
using the sequential patterns extracted from the training set 
and the scoring function with the optimal fold weights 
calculated from the training set. 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: The flowchart of the proposed method. 
 

A. 1st Stage 
In the first stage of the method, the SPM technique is used 

for protein primary structure analysis. SPM is a common 
form of local-pattern discovery in unsupervised learning 

systems, which can be defined as follows [14]: Let 
1 2{ , ,..., }nI i i i= be a set of items. A subset X I⊆ is an 

itemset and |X| is the size of X. A sequence 
1 2( , ,..., )ms s s s= is an ordered list of itemsets, where 
, {1,..., }is I i m⊆ ∈ . The size, m, of a sequence is the number 

of itemsets in the sequence, i.e. |s|. The length l of a 

sequence 1 2( , ,..., )ms s s s=  is defined as 
1

| |.
m

i
i

l s
=

= ∑  A 

sequence with length l is called an l-sequence. In our 
problem the input sequences are the protein primary 
structures and the set of items I is the 20 amino acids which 
compose the protein primary structures plus one for the 
unknown aminoacid. An itemset in a transaction 
(observation) consists of a single item (one of the 21 letters). 

In SPM, a database D is a set of tuples (sid, tid, X), where 
sid is a sequence-id, tid is a transaction-id based on the 
transaction time and X is an itemset such that X I⊆ . Each 
tuple in D is referred to as a transaction. For a given 
sequence-id, there are no transactions with the same 
transaction id. All the transactions with the same sid can be 
viewed as a sequence of itemsets ordered by increasing tid. 
Thus, an analogous representation for the database is a set of 
sequences of transactions and we refer to this dual 
representation of D as its sequence representation. In our 
case, the database D consists of protein primary structures 
and every one is given a sequence id, while the tid is the 
position of the amino acid in the protein primary structure, 
rather than the time. 

A sequence 1 2( , ,..., )a ns a a a= is contained in another 
sequence 1 2( , ,..., )b ms b b b= if there exist integers 

1 21 ... ni i i m≤ < < < ≤  such that 
1 21 2, ,i ia b a b⊆ ⊆  

...,
nn ia b⊆ . If sequence as  is contained in sequence bs , 

then we call as  a subsequence of bs and bs a supersequence 
of as . The support of a sequence sa in the sequence 
representation of a database D is defined as the percentage 
of sequences s D∈ containing sa. The support of sa in D is 
denoted by supD(sa). Given a support threshold minSup, a 
sequence sa is called a frequent sequential pattern on D if 
supD(sa) ≥ minSup. The problem of mining sequential 
patterns is to find all frequent sequential patterns for a 
database D, given a support threshold sup. 

Several constraints can be incorporated when mining for 
sequential patterns [18]. One of the simplest constraints 
applied is the gap constraint. This constraint imposes a limit 
in the maximum distance between two consecutive itemsets 
in the sequence. This simple constraint is very useful to 
reflect the impact of some item on another one, in particular, 
when each transaction occurs at a specific instant of time. 
When using gap constraints, the notion of contained in is 
adapted: a sequence 1 2( , ,..., )a ns a a a=  is a δ-distance 
subsequence of 1 2( , ,..., )b ms b b b= , if there exist integers 

Training Proteins

Sequential pattern mining

Pattern score calculation

Fold score calculation

Optimization

Classification

Training Proteins

Sequential pattern mining

Pattern score calculation

Fold score calculation

Optimization

Classification



 
 

 

1 21 ... ni i i m≤ < < < ≤  such that 
1 21 2, ,i ia b a b⊆ ⊆  

...,
nn ia b⊆ and 1k ki i δ−− ≤ . A sequence as  is a contiguous 

subsequence of bs  if as  is a 1-distance subsequence of bs , 

i.e. the items of as  can be mapped to a contiguous segment 

of bs . Using δ=1 (i.e. maximum gap=1) the possibility of 
having gaps between consecutive items is eliminated. 
Similar to the maximum gap constraint is the minimum gap 
constraint, which states that the distance between two 
consecutive items must be more than a specified value 
( 1 'k ki i δ−− ≥ ). 

Several algorithms have been reported in the literature 
which implement the above described SPM procedure 
[14,19,20]. However, little work has been done in 
constrained SPM [21-23]. An algorithm that performs 
efficient and effective constrained SPM is the cSPADE 
algorithm [21]. cSPADE is based on the SPADE algorithm 
[24], and finds the set of all frequent sequences with 
constraints, such as the minimum and maximum gaps 
between sequence items. The cSPADE algorithm uses 
efficient lattice search techniques and simple join operations 
on id-lists. As the length of a frequent sequence increases, 
the size of its id-list decreases, resulting in very fast joins. 
The performance of the cSPADE algorithm is generally 
superior, compared to other constrained SPM approaches. 

We employed the cSPADE algorithm in order to extract 
sequential patterns from the training set. The training set is 
divided into subsets, each one containing proteins from the 
same fold only. Then, cSPADE generates one set of 
sequential patterns for every fold under consideration. These 
patterns constitute the features to be used to classify the 
unknown proteins. Several experiments were performed, 
concerning the gap and the support constraints. It should be 
mentioned that even if SPM is an unsupervised technique, 
we employed it in a supervised manner, since we generated 
sequential patterns for each category (fold) separately. A 
pattern extracted from a fold, indicates an implication (rule) 
of the form pattern ⇒ fold.  

 
B. 2nd Stage 

 In the second stage of the method, the extracted sequential 
patterns are employed to classify the proteins of the training 
set. A scoring function is utilized [25], that takes into 
account the length of a pattern and the number of patterns 
extracted from each fold. If a pattern is contained in a 
protein, the score of this protein with respect to the class 
(fold) of the pattern is increased by: 

1
#

j
j i

i
length of the pattern

score
of fold i patterns

⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
,        (1) 

where i represents the fold, j represents the pattern of a fold 
and j

ipattern  denotes the jth pattern of the ith fold. We 
subtract one from the length of the pattern, in order to assign 

the minimum score, which is 1, to the minimal pattern, 
whose length is 2. We calculate the total scores for every 
fold and for every protein in the training set and we produce 
the scoring matrix C  whose size is v m× , where v  is the 
number of proteins in the training set and m  is the number 
of folds. The ( , )k i  element of the C  matrix denotes the 
score of the kth protein (training set) received for the jth fold. 
 Then based on the following pseudocode, we produce the 
confusion matrix for the training set: 
 

( ) ( ) ( ) ( )( )
( )( ) ( )( )

1:
1:

, ,:

, , 1

.

for i m
for k v

if i C k i max i C k

confusion i Class k confusion i Class k

END
END

END

=
=

Θ × = = Θ ×

= +  

 
Θ  is a vector with m  elements containing the fold weights, 
i.e. ( )iΘ  is the weight of the ith fold, with i=1,2…m. Class  

(annotation) is a vector with v  elements, so ( )Class k  
contains the class of the kth protein for k=1,…, v.  
 Initially all ( )iΘ  are set to one and all ( ),confusion i j , 
for , 1i j = … m  are set to zero. The goal of the optimization 
step is to maximize an objective function, with the ( )iΘ  as 
the parameters. The following objective function was 
employed: 

( )( ) ( )
1

, .
m

i

F i v confusion i i
=

Θ = −∑                  (2) 

The above function tries to maximize the number of the 
diagonal elements of the confusion matrix, with respect to 
the parameters ( )iΘ .  

For the optimization, we employed the simplex search 
method [17]. It is a direct search method that does not use 
numerical or analytic gradients. If nΘ ∈ , a simplex in the 
n-dimensional space is characterized by the n+1 distinct 
vectors that are its vertices. In two-space, a simplex is a 
triangle; in three-space, it is a pyramid etc. At each step of 
the search, a new point in or near the current simplex is 
generated. The function value at the new point is compared 
with the function's values at the vertices of the simplex and, 
usually, one of the vertices is replaced by the new point, 
giving a new simplex. This step is repeated until the 
diameter of the simplex is less than a specified tolerance. 

 
C. 3rd Stage 
 In the 3rd stage, our method classifies a protein of 

unknown class (fold) in only one among all m  classes. 
The classification of the test proteins is similar to the 
classification of the proteins in the training set. Having 
found the optimal vector for the fold weights  



 
 

 

TABLE  I: THE DATASET USED AND THE CORRESPONDING TRAINING AND 
TEST PROTEINS. 

Fold Index Train Test 
Globin-like a1 21 11 

Cytochrome c a3 20 10 
DNA-binding 3-helical bundle a4 103 52 

Four-helical up-and-down bundle a24 28 15 
EF-hand a39 31 15 

SAM domain-like a60 25 12 
Alpha-alpha superelix a118 32 16 

All alpha proteins  260 131 
Immunoglobin-like beta sandwich b1 132 66 

Common fold of diphtheria 
toxin/transcription factors/cytochrome f b2 20 10 

Galactose-binding domain-like b18 21 10 
ConA-like lectins/glucanases b29 24 12 

SH3-like barrel b34 44 22 
OB-fold b40 61 31 

Trypsin-like serine proteases b47 25 12 
PH domain-like b55 24 12 

Double-stranded beta-helix b82 28 14 
Nucleoplasmin-like b121 27 14 
All beta proteins  406 203 

Overall  666 334 
 
optΘ  from the training set (2nd stage), we employ the scoring 

function, shown in Eq. (1), in order to produce the scoring 
matrix C  for the test set. Then, using the above mentioned 
pseudocode and instead of ( )iΘ , the ( )opt iΘ , the 
classification of the test sequences is realized. 
 It should be mentioned that the score of a protein with 
respect to a fold is calculated based on the number of 
sequential patterns of this fold contained in the protein. The 
higher the number of patterns for a fold contained in a 
protein, the higher the score of the protein for this fold. 
Some adjustments and weightings are required when 
calculating the score. The length of the pattern in the 
nominator causes longer sequential patterns more significant 
than shorter ones. Also, the score of a protein with respect to 
a fold is normalized by dividing it with the number of 
sequential patterns extracted from this fold.  
 The above scoring function is a heuristic one, selected 
after a series of experiments. We utilized also the times a 
sequential pattern is contained in the sequence raised in the 
power of n (n=1,2,…), the logarithm of the length of the 
pattern, the length of the pattern raised in the power of n 
(n=1,2,…), the support of the pattern and others, but all 
these reported lower classification results. 

III. DATASET 
In order to validate the proposed classifier, an appropriate 
group of primary protein sequences was taken from the 
Protein Data Bank (PDB) [26]. All members of this group 
correspond to a specific fold at the Structural Classification 
of Proteins (SCOP) database [27]. As protein members we 
used those included in the ASTRAL SCOP 1.69 dataset, 
where no proteins with more than 40% similarity among 
them are contained. The complete dataset used in the current 
study is shown in Table I. Specifically the 17 most 
populated SCOP folds with at least 30 members, 
 

 

 

TABLE II: THE NUMBER OF THE EXTRACTED SEQUENTIAL 
PATTERNS AND THE OVERALL RESULTS OF OUR METHOD FOR 
DIFFERENT VALUES OF THE MAXIMUM GAP (MAX_GAP) 
CONSTRAINT IN THE TRAINING SET.  
Max-gap # of Patterns Acc1* (%) Acc2** (%) 

1 1568 36.5 40.8 
2 3670 38.4 60.8 
3 7404 54.4 65.8 
4 17542 69.1 77.9 
5 38557 67.6 78.1 

*The accuracy of the method when only the SPM procedure is 
used for fold recognition. 
**The accuracy of the method when both the SPM procedure and 
the optimization step are employed for fold recognition. 

 
TABLE III: THE OVERALL RESULTS OF OUR METHOD 
WHEN APPLIED IN THE TEST SET FOR DIFFERENT 
VALUES OF THE (MAX_GAP) CONSTRAINT. 

max-gap Acc1* (%) Acc2** (%) 
1 22.5 22.5 
2 18.3 32.0 
3 27.0 38.0 
4 35.9 41.3 
5 31.1 39.2 

* The accuracy of the method when only the SPM 
procedure is used for fold recognition. 
**The accuracy of the method when the SPM 
procedure and the optimization step are employed 
for fold recognition. 

 
from classes A and B (A helixes and B sheets respectively) 
were used to derive the training and test data. From the 
1,000 proteins in total, two thirds from each category were 
used for training, while the rest for evaluation (Table I). 

IV. RESULTS 
Our method has been evaluated in the above described 
dataset. We set the minimum support to 50%, (i.e. the 
pattern should be present in at least half of the training 
proteins), the minimum gap to 1, (which is the minimum 
value for this type of gap) and we tried several values for the 
maximum gap (max-gap). In Table II we present the number 
of the extracted sequential patterns, as well as, the results of 
our method when the training set is used, for several values 
of max_gap. In Table III the results concerning the test set 
are presented. For the different values of max_gap, the 
overall accuracy increases when the optimization step is 
employed. Specifically, when only SPM was employed 
(without the optimization step), the average accuracy was 
22.5% using max_gap=1 (i.e. no gaps between the 
aminoacids), 18.3% with max_gap=2, 27.0% with 3, 35.9% 
with 4 and 30.5 using max_gap=5. When employing the 
SPM and the optimization step, the average accuracy 
increased to 22.5% using max_gap=1, 32.0% with 
max_gap=2, 38.0% with 3, 41.3% with 4 and 39.2 with 5. 
The best results were obtained using max_gap=4 and are 
shown in Table IV. In addition, Table IV shows the number 
of the extracted sequential patterns and the corresponding 
performance of the classifier (using the optimal parameters). 
 As we can see, the number of patterns varies significantly 
among the folds and this is the reason for using the number  



 
 

 

TABLE  IV: THE NUMBER OF SEQUENTIAL PATTERNS FOR EVERY FOLD UNDER CONSIDERATION FOR THE OPTIMAL PERFORMANCE CLASSIFIER, 
THE OVERALL PERFORMANCE ACHIEVED IN THE TRAINING AND THE TEST SETS AND THE TOP1-TOP3 OVERALL ACCURACIES.  

 Training set Test set 
Index Patterns Acc1* (%) Acc2**(%) Acc1*(%) Acc2**(%) Top2*** Top3*** 

a1 687 76.2 66.7 36.4 36.4 36.4 45.5 
a3 623 80.0 85.0 70.0 60.0 70.0 80.0 
a4 500 62.1 70.1 38.5 50.0 73.1 78.9 
a24 860 92.9 89.3 20.0 13.3 20.0 26.7 
a39 476 83.9 80.7 80.0 66.7 86.7 86.7 
a60 559 84.0 92.0 33.3 25.0 33.3 33.3 

a118 1381 59.4 90.6 18.8 50.0 62.5 68.8 
 5086 72.3 79.2 40.5 45.0 60.3 65.7 

b1 742 65.9 74.2 57.6 66.7 71.2 78.8 
b2 1364 90.0 90.0 30.0 0.0 10.0 20.0 
b18 1384 81.0 95.2 10.0 20.0 20.0 60.0 
b29 1525 66.7 91.7 8.3 41.7 66.7 66.7 
b34 356 59.1 61.4 31.8 40.9 54.6 63.6 
b40 883 55.7 55.7 19.4 12.9 35.5 51.6 
b47 1458 92.0 96.0 66.7 66.7 83.3 83.3 
b55 695 75.0 91.7 0.0 0.0 16.7 58.3 
b82 1884 39.3 85.7 0.0 14.3 28.6 35.7 

b121 2165 81.5 88.9 21.4 35.7 71.4 78.6 
 12456 67.0 77.1 33.0 38.9 52.7 64.5 
 17542 69.1 77.9 35.9 41.3 55.7 65.0 

                  *The accuracy of the method when only the SPM procedure is used for fold recognition. 
                   **The accuracy of the method when both the SPM procedure and the optimization step are employed for fold recognition. 
                   ***The Top2 and Top3 accuracies of the method when both the SPM procedure and the optimization step are employed for fold                      

recognition. 
 

of sequential patterns of foldi in the denominator of the 
scoring function. Also, in Table IV, the classification results 
for each fold are presented as Top1, Top2 and Top3 
accuracy (Top3 accuracy corresponds almost to the 20% of 
the total number of classes). Topk accuracy is computed by 
considering a classification as correct even if the actual 
(true) fold receives a score between the 1st and kth highest 
ones. The Topk accuracy provides the k most probable folds 
that the unknown protein belongs to. In our case Top2 
overall accuracy is 55.7% and Top3 overall accuracy is 
65.0%. Using the same datasets and in order to compare the 
efficiency of the proposed approach, we employed also a 
SAM model for the same task. Our approach reported 
overall accuracy 41.3%, with max_gap 4, while SAM’s 
overall accuracy was 35.0%.  

V. DISCUSSION 
We developed a novel method for protein fold recognition  

that classifies unknown proteins into 17 candidate folds 
based on sequential pattern mining and optimization 
algorithms. The SPM technique was employed using the 
cSPADE algorithm in order to mine the sequential patterns. 
Using a simple scoring function which utilizes the extracted 
sequential patterns and an optimization algorithm to 
compute the optimal class weights, the unknown proteins are 
classified into the corresponding fold. To evaluate the 
method, an appropriate group of protein primary structures 
was acquired from the PDB. Using the same datasets we 
employed also a SAM model for the same task. Our method 
exhibited an overall accuracy of 41.3% while SAM’s overall 
accuracy was 35.0%. 

 
The SPM approach employed in this work is suitable for 

analyzing biosequences like protein primary structures due 
to their sequential nature and is able to discover strong 
sequential dependencies (patterns) between aminoacids. 
Furthermore, the training phase of the method, i.e. the 
determination of the sequential patterns, is a fast procedure 
due to the cSPADE algorithm. Generally, SPM is a time 
consuming process and requires high computational effort 
which is increased exponentially as longer sequences need 
to be mined. The lattice search techniques and the simple 
joins that the cSPADE algorithm employs, handle the two 
above aspects effectively.  

In what concerns the employed optimization procedure 
for the calculation of the optimal fold weights, the results 
prove its efficacy. Specifically, using optimization the 
overall accuracy increased 5.4% when the test set was used.  

However, our method imposes two major limitations. 
When classifying an unknown protein, all the sequential 
patterns extracted from all the folds in the training phase, 
should be checked in order to find out if they are contained 
in the protein. Since the number of the extracted sequential 
patterns was considerable, a large number of comparisons 
should be performed in order to reach to the classification 
decision. Moreover, the utilization of SPM, besides finding 
valid and causal relationships in the biological data, it will 
also find all the spurious and particular relationships among 
the data in the specific dataset. For this reason, results of any 
SPM procedure should be considered as exploratory and 
hypothesis-generating.  

Further improvement might focus on the utilization of the 
secondary protein structure in addition to the primary one. 
This would of course increase the complexity of the method, 



 
 

 

but might produce higher classification results. Another 
issue is the use of global optimization techniques and also 
the implementation of a more sophisticated objective 
function. 
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