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Abstract— Recent advances in biological experiments, such 
as DNA microarrays, have produced large multidimensional 

data sets for examination and analysis. Scientists however, 

heavily rely on existing biomedical knowledge in order to fully 

analyze and comprehend such datasets. The approach we 

propose combines statistical natural language processing 

techniques with the GO annotation ontology, for assessing the 

biological relatedness of gene products clusters. We explore the 

application of the vector space model as a means of quantifying 

this relatedness between gene products, based on their 

underlying biological properties, as indicated by the GO terms 

associated with them. We report on experimental results on a 

small subset of saccharomyces gene products. We also propose 

and validate a biological similarity figure of merit which can 

assess gene expression cluster analysis results. Finally, we 

deploy our approach combined with hierarchical clustering in 

order to illustrate its application to gene expression clustering 

experiments. 

 

Index Terms— Clustering, Gene Ontology, Text Mining, 

Vector Space Representation. 

I. INTRODUCTION 

Recent advances in biological experiments such as DNA 

microarray technology have made it possible to 

simultaneously monitor the expression levels of thousands 

of genes in parallel during important biological processes 

and across large collections of samples, providing insight 

into gene functionality and their regulatory mechanisms. 

Microarrays enable researchers to identify and comprehend 

genes and their respective functions that would have 

otherwise remain unknown.  

Large scale experiments like this however induce and 

heavily rely on massive amounts of generated information. 

The measured patterns during such experiments are very 

often explained retrospectively by examining and analyzing 

the underlying biological properties of the respective gene 

products composing the data set. Thus, the amount of 

 
 

scientific discoveries, hypotheses and cross-references, 

stored mainly in raw text format across a number of 

specialized systems, is growing rapidly.  

Existing biological knowledge is critical in order to 

comprehend such data sets. Researchers have argued 

towards the effectiveness of deploying computational 

methods that incorporate external information sources in 

order to assist the interpretation and organization of such 

experiments [1]. External information sources include 

ontology-based knowledge, primary and secondary 

sequence databases and medical literature. Published 

scientific text contains a distilled version of the most 

biologically significant discoveries and is a potent source of 

information for integrating in experiments [2].  

A number of solutions yielding high accuracy results 

exist but they often rely on the integration of information 

from a number of external information sources such as 

MEDLINE, making them less flexible and perhaps in many 

cases organism oriented. A more detailed overview of these 

approaches is provided in section 2. 

Our approach demonstrates that statistical text processing 

techniques can be deployed solely on the Gene Ontology 

and the information therein and yield fruitful results. We 

feel that solutions which are based mainly on medical 

literature, such as MEDLINE abstracts and raw text, offer a 

broader notion of similarity between gene products since 

biomedical literature contains knowledge regarding gene 

relations discussed in a variety of contexts.  

On the other hand, Gene Ontology (GO) annotation terms 

are specific and explicitly denote a gene product’s 

molecular function, the biological process in which it takes 

part in or the molecular component in which it resides [3]. 

Thus, making extensive usage of the GO annotation terms 

will provide more specific biomedical information and a 

more accurate measure on the correlation between gene 

products. 

Our main goal is to develop an approach that exploits and 

incorporates the vast amounts of biological information GO 

offers in the analysis of groups of genes; for example gene 
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clusters resulting from high-throughput gene expression 

analysis experiments. Unlike the majority of existing 

approaches, the framework developed solely operates on the 

information within the GO ontology and does not rely on 

external information sources. 

The remaining of the paper is organized as follows: 

Section 2 reviews related work. Section 3 details the 

methods used in the proposed approach. Section 4 presents 

experimental results. Section 5 discusses and evaluates the 

results and concludes the paper with directions for further 

work. 

II. RELATED WORK 

Information retrieval, text mining and statistical natural 

processing methods have been recently deployed in order to 

discover and assess the biological similarity between 

individual pairs and clusters of genes based on existing 

literature.  The majority of methods use existing biomedical 

databases containing textual information on gene products 

such as MEDLINE [4] and SWISS_PROT [5]. 

Additionally, several methods use the GO annotation as 

source of existing knowledge for both analyzing and 

evaluating results from large scale biological experiments 

and yield encouraging results.  

Raychaudhuri et al. recently developed the Neighbour 

Divergence per Gene (NDPG) concept in order to assess the 

functional coherency of a group of genes by utilizing 

existing knowledge from public repositories such as 

MEDLINE [6]. Based on the GO gene annotation ontology, 

Gibbons & Roth developed a method to judge the quality of 

gene expression clustering methods [7] and combined it 

with the Saccharomyces Genome Database (SGD) database 

[8] and existing datasets [9,10] Glenisson et al. [11] 

evaluated the vector space representation [12] in text-based 

clustering of genes selected from the MIPS [13] functional 

catalogue.  

Lord et al. [14] used a similar approach when they 

explored the semantic similarity between GO terms by 

making use of Resnik’s [15] notion of shared information 

content. Similarity between annotation and literature has 

also been shown to augment sequence similarity searches. 

In their work, Chang et al. [16] augmented PSI-BLAST [17] 

with similarity scores calculated over the annotations and 

MEDLINE references cited by entries retrieved by the 

individual sequence similarity searches. Finally, Karypis et 

al. describe a method of textual analysis of documents 

associated with pairs of genes and describe how their 

approach can be utilized for discovering, identifying and 

annotating functional relationships among genes [18].  

III. METHODS 

A. Constructing gene profiles 

 

Ontologies are the most common form for the 

representation of knowledge in the bioinformatics 

community. An ontology is the specification of the key 

concepts in a given field of operations combined with the 

description of the relationships that exist amongst these 

concepts. In the majority of cases, an ontology is composed 

by a strictly controlled vocabulary. Additionally, the 

relationships between the concepts are established as 

axioms that capture the network structure of the knowledge 

that they model. 

A number of different ontologies have been developed in 

the past years and have been widely used in the 

bioinformatics field such as the Unified Medical Language 

System (UMLS) [19] and the Gene Ontology. The GO 

ontology consists of a widely accepted and standardized 

gene annotation vocabulary used by scientists in order to 

express and define in a clear and concise manner certain 

biological attributes about a specific gene. GO consists of 

three separately structured ontologies called molecular 

function, biological process and cellular component. 

Biological process refers to the biological objective in 

which the gene or gene product contributes to. The 

molecular function ontology denotes the biochemical 

activity of a gene and finally, the cellular component refers 

to the place in the cell where the gene product resides. 

Every GO term follows the true path rule: the pathway 

from a child term all the way up to its top-level parent(s) 

must always be true. If a specific child term describes a 

gene product, then all its parents also apply to that gene 

product. By exploiting this rule we are able to construct 

more accurate and concise gene profiles since additional 

GO terms are assigned to each gene product. 

We used the SGD database to construct a smaller gene 

subset, consisting of 88 genes from three biologically 

distinct groups.  The first group contains genes related to 

the DNA metabolism biological process, the second group 

is related to the process of transport and finally genes 

composing the third group are involved in the yeast 

sporulation process. A detailed summary of the gene 

product subset that was constructed can be seen in Table I. 

For every gene product, the path from its assigned GO 

term up to the root node of the ontology is extracted. This is 

easily achieved by querying a local version of the latest GO 

relational database port and parsing the results. This 

effectively assigns a set of GO terms to the gene product. 

For every GO term assigned to the gene, the definition field 

is extracted from the GO ontology and appended to the 

genes textual profile. For example, as seen in Fig. 1, the 

textual profile constructed for the APN1 will include the 

textual information extracted from the definition fields from 

the GO:0006281, GO:0006259, GO:0006139, 

GO:0044237, GO:0050875 and GO:0007582 annotation 

terms which were previously associated with the gene 

product by exploiting the true path rule.  Standard 

stemming algorithms where applied [20] on each profile. 

 



10 

 

3 

Table I: A summary of the respective GO terms which 

compose the yeast subset used 

 

Biological 

group 

Term name Number 

of genes 

sporulation 13 sporulation 

sporulation (sensu funghi) 19 

amino acid transport 15 

aromatic amino acid transport 1 

basic amino acid transport 7 

transport 

 

neutral amino acid transport 4 

DNA repair 5 

mismatch repair 11 

bypass DNA synthesis 1 

error-free DNA repair 4 

DNA 

metabolism 

postreplication repair 8 

 

B.     Vector space model representation 

We encoded the individually constructed gene text 

profiles using a bag-of-words following the vector space 

model paradigm. The vector space model effectively 

encodes an entire document into a k-dimensional vector 

which represents the terms found within the document and 

their occurrence. The grammatical structure of the 

document is generally ignored and terms are individually 

extracted, therefore making this approach also known as 

bag-of-words. 

In the vector space model representation, a document is 

represented by a weighted vector (also known as a profile) 

of which each individual component corresponds to a single 

term from the entire set of terms within the constructed 

vocabulary [21]. For every term found in the document, a 

value denotes its presence and is represented by a weight 

within the documents profile as shown in equation (1).  

 

                             di = (wi,1, wi,2, …wi,N)                   (1) 

 

Each weight wij within the document vector d of 

document i, represents the weight of term j from the 

vocabulary of size N.  

The individual weights representing terms found within the 

document are calculated during the indexing operation. A 

number of popular indexing schemes exist and were taken 

into consideration [22].  

Eventually, we used the IDF indexing scheme in order to 

minimize the noise within our data set and additionally 

minimize the impact of very common biological terms. 

Automatic indexing of the profiles as well as stop word 

elimination was performed by using the doc2mat script; a 

part of the CLUTO toolkit [23]. 

C.     Quantifying biological similarity 

 
Similarity between a pair of documents di and dj   is 

calculated by measuring the cosine of the angle between the 

normalized weighted vectors representing the two 

documents [24], as shown in equation (2):  

 

sim(di,dj)   =  cos(di, dj )                                            (2) 

 

The same concept applies when calculating the similarity 

between a document di and a query document dj. The 

underlying hypothesis behind this statistical approach for 

assessing document similarity states that a high degree of 

similarity between the documents also denotes a high degree 

of relevance and semantic similarity between them.  

Based on this concept, we can define a similarity metric 

which can be used to quantify the functional relationship 

between individual GO terms assigned to genes. 

Subsequently, the metric can act as a measurement of 

biological relatedness between pairs of genes that the 

respective terms have been assigned to. Since the text 

profiles constructed for the gene products essentially 

describe their biological properties, should two genes share 

common biological properties, they will also share a very 

high degree of similarity between their associated text 

profiles.   

Based on this notion, given two genes i and j, represented 

by their previously constructed textual profiles di, dj we 

define BIOsim as the cosine of the angle between the 

normalized weighted vectors representing their individual 

textual profiles (3). 

 

BIOsim(i,j)   =  cos(di,dj)                                        (3) 

 

Gene products which share a high degree of biological 

correlation will have BIOsim values closer to 1 whereas 

lower values towards zero will illustrate a very low degree 

of similarity. Similarly, we can also assess and quantify the 

biological relatedness and coherency of a group of genes 

based on the same metric notion. Given a group of genes, 

we can define the clusters functional coherence, BIOco, 

based on the arithmetic mean of their normalized weighted 

vector representations (4). 

∑ = )),cos(),((
1

djdijiBIOsim
n

                        (4) 
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Fig. 1: A complete path from the DNA repair annotation term up to the top level parent 

 

Based on (8), clusters which are biologically coherent will 

have a BIOCo value close to 1 whereas lower values will 

denote smaller degrees of biological relatedness shared 

between the gene products composing the cluster. Both 

measures are able to quantify the biological similarity between 

individual pair of genes or a cluster of genes based on the 

medical and biological knowledge extracted from their 

associated GO annotation terms. 

IV. RESULTS 

A. Validating functional similarity 

In order to validate our approach, we initially clustered all 

individual gene products based on the respective document 

profiles we constructed. Initially, we attempted to cluster the 

profiles in three clusters, each of them representing the three 

major biological processes in which the gene products belong 

too as seen in Table 1. 

In order to cluster the profiles, we used CLUTO, a software 

package for clustering high dimensional data [23]. Using the 

cosine similarity as a metric, in the first run all 88 genes were 

correctly clustered in the three major clusters representing the 

biological processes. Fig. 2 illustrates the matrix 

representation of the first cluster produced which contains the 

32 gene products composing the sporulation category. A term 

represented with a bright grey colour illustrates greater 

presence of that term within the cluster, whereas lighter shades 

of red and white depict lower values and zero respectively. 

The 12 most descriptive stemmed features, with their 

respective percentage, for the cluster containing the gene 

products composing the sporulation biological process, which 

best illustrate it can be seen in Table II. 

During the second run, we set the total number of clusters to 

11 in order to explore the possibility of identifying all the 

relevant biological sub-groups existing within the data set and 

grouping the genes together accordingly. Using the cosine 

similarity as a metric of similarity between textual profiles, all 

gene products were clustered accurately and assigned to the 

relevant cluster which denoted their respective biological 

property.  

Using these two scenarios we were able to validate the 

correctness of our approach since all gene products were 

correctly clustered with biologically similar genes based on the 

similarity of their textural profiles. Using a similar line of 

attack, we attempted to calculate the coherency of the entire 

dataset. By forcing all gene products in one cluster we were 

able to quantify the biological coherency score of the cluster 

(0.281).  

 

Table II: The features for the cluster which contains the gene 

products composing sporulation 

 

Feature Percentage Feature Percentage 

reproduct 25.1% format 19.6% 

spore 19.6% sporul 19.6% 

fungi 6.3% taxonomi 1.6% 

funghi 1.6% ncbi 1.6% 

psysiolog 1.6% 4751 1.6% 

sensu 1.6% organ 0.3% 

 

The low value we obtained denotes a very small degree of 

biological relatedness between the gene products composing 

the cluster – something predictable since all three biological 

groups were clustered together. Similarly one could quantify 

the biological coherency of other gene clusters and use the 

obtained values in order to prioritize clusters for further 

analysis. 

B. Further experiments  

Further experiments were carried on actual budding yeast S. 

cerevisae data, as collected from microarray experiments [10]. 

For this purpose, we made use of the dataset utilized by Eisen 

et al during their data clustering experiments. Similar to the 

original experiments, we applied pairwise average-linkage 

cluster analysis to the gene expression dataset using a form of 

correlation coefficient similar to Pearson’s correlation 

coefficient.  

A striking result of the process is the tendency of large 

groups of genes which are clustered together to share common 

biological properties; more specifically a strong display of 

similarity in the biological process area. This validates one of 

the basic assumptions under which microarray scientists 

operate on, the fact that genes which share common expression 

patterns are most likely to share common biological properties 

as well. 
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Fig. 2: A matrix representing the cluster which contains the gene products composing sporulation. 

 
 

Fig. 3: Clustered display of the eight histone genes which are clustered together. These genes essentially duplicates of the 

histones and it has been shown elsewhere that they are coregulated at a particular point of the cell cycle. 

 

 
 

Fig. 4: Clustered display of the 27 genes which are clustered together and are involved in the proteasome. The assigned BIOsim 

value of 1 denotes a perfectly functional coherent cluster since all of the genes composing it share an identical biological_process 

term from the GO. Partial image segment extracted from [10]. 

 

 

Initially, two very tight clusters immediately stand out from 

the results and are displayed in Fig. 3 and Fig. 4. The first 

cluster displayed in Fig. 3 is composed by eight histone genes 

which are essentially duplicates of the histones H2A, H2B, H3 

and H4. Hereford et al. showed that these genes display similar 

regulation patterns at a particular point of the cell cycle [25]. 

Similarly, the cluster displayed in Fig. 4, contains 27 genes 

which encode the bulk components of the protease. Both 

clusters immediately stand out from the hierarchical tree 

constructed during the process since they both have a BIOsim 

value of 1.  

The glycolysis cluster contained 15 gene products involved 

in the biological process of glycolysis within the cell. 

Additionally, it also contains the TKL1 gene product which 

takes part in the pentose phosphate cycle process and ACS2 

which takes part in the acetyl-conenzyme biosynthesis process. 

The calculated BIOsim score for the cluster was 0.723.  

V. CONCLUSION 

 In this paper we described a statistical natural language 

processing approach based on the vector space model in order 

to assess and quantify the biological similarity between pairs 

and clusters of gene products. Our main aim was to explore the 

potential of utilizing the vector space model solely on 

biological information extracted from the GO terms associated 

with individual gene products.  

By exploiting the true path rule, we associated a number of 

GO terms with each gene product, the terms which compose 

the path from its assigned term up to the parent term of the 

taxonomy. We then constructed a textual profile of an average 

of 150 terms based on the definition field of the respective 

terms. Since the textual profiles constructed essentially 

describe the underlying biological properties of the gene 

products, a high degree of semantic similarity between the 

profiles translates to a high degree of biological similarity 

between the gene products. We are able to measure and 

quantify the biological relatedness between gene products and 

clusters composing them by calculating the dot product 
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between pairs and the average dot product between genes 

composing a cluster respectively. Values close to 1 denote a 

high degree of biological similarity and coherency respectively 

whereas values closer to 0 denote a very low degree of 

similarity. In order to validate our approach and obtain some 

initial experiments we constructed a small subset of 88 

saccharomyces genes from 3 distinct biological groups. We 

then constructed their individual text profiles and clustered the 

associated gene products based on the degree of semantic 

similarity between them. 

One of the main aims in our research is the application and 

integration of the above mentioned approach within the 

context of gene expression clustering. We have previously 

explored this approach by developing a graph oriented 

approach to assessing a clusters biological coherency based on 

GO [26].  

We are also currently working on constructing query 

documents in order to accurately identify the dominant 

biological properties of a potential cluster of genes. A query 

document will essentially be a text profile which will contain a 

large number of features, all associated with a major biological 

concept. A high degree of similarity between the textual 

profiles of the gene products composing the cluster and the 

actual query document is a very good indication that the 

biological property it describes is dominant within the cluster. 

Finally, we are considering the implementation of a weighting 

scheme for the respective annotation terms assigned to each 

gene product as previously explored in [27].  
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