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Abstract—In medicine, the nature of an illness is often 
determined through behavioral or biological markers. The 
process of diagnosis becomes difficult when dealing with 
mental disorders since they rely primarily on behavioral 
markers. Schizophrenia is an example of a complex mental 
disorder that relies on aberrant behavior such as auditory 
hallucinations, dampening of emotions, paranoia, etc. This 
research is an attempt to determine a biological marker for 
schizophrenia through the use of functional magnetic 
resonance imaging (fMRI). In this paper, we propose a method 
of classification of schizophrenia and healthy controls, using a 
neural network approach and functional brain ‘modes’ 
estimated from resting state data using independent component 
analysis. A reliable technique for discriminating schizophrenia 
based upon fMRI would be a significant advance and may also 
provide additional information about the biological 
implications of mental illness. 

I. INTRODUCTION 
CCORDING to the National Institute of Mental Health 
(NIMH), Schizophrenia is the most chronic and 

disabling of the severe mental disorders.  The disease affects 
some of the most highly evolved functions in humans such 
as perception, memory, attention, cognition, and emotion. 
The cognitive symptoms of schizophrenia, which include 
difficulties with attention, memory, and problem solving, 
can create significant barriers to a normal and productive 
life. Finding treatments for these symptoms has been 
hampered by a lack of scientific consensus on which 
cognitive impairments should be targeted for research and 
what tools are best for measuring them.  

Extensive research is being performed on data from 
structural and functional magnetic resonance imaging (MRI) 
at the Olin Neuropsychiatry Research Center (ONRC) in 
Hartford, CT.  Work discussed in this paper specifically 
focuses on functional MRI (fMRI) data collected from both 
healthy controls and patients diagnosed with schizophrenia.  
FMRI scans were collected at the ONRC.  Although there 
has been much work showing difference in the fMRI of 
schizophrenic patients and healthy controls in task-related 

scans, this research focuses on “resting state” scans, in 
which the subject is requested to lay still for five minutes in 
the scanner with his/her eyes closed, not to think of one 
thought in particular and not to fall asleep.  Resting state 
scans are useful because they do not confound performance 
with brain activity [3][16].  There is also an additional 
advantage of using resting state scans since collection of the 
data is easier and quicker than typical cognitive paradigms. 
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One of the most popular multivariate methods to analyze 
fMRI data is independent component analysis (ICA).  ICA is 
a statistical and computational technique for revealing 
hidden factors that underlie sets of random variables, 
measurements, or signals. The ICA of the random variable x 
consists of finding a linear transformation s = A-1x so that 
the components s are as independent as possible [13][22].   

Feed forward neural networks were used to analyze 
spatial ICA components extracted from subjects’ resting 
state fMRI data and to classify the subjects as either patients 
or healthy controls.  Artificial neural networks are 
computational systems whose architecture and operation are 
inspired from the knowledge about biological neural cells 
(neurons) in the brain.  In this paper, the neural networks are 
trained using the classic back propagation algorithm, which 
derives its name from the fact that error signals are 
propagated backward through the network on a layer-by-
layer basis.  Therefore, in a three layer neural network 
(input, hidden, and output layers), the weights of the 
network are uploaded starting with the hidden to output 
weights, followed by the input to hidden weights, with 
respect to the sum of square error.   

The next few sections will introduce the detailed design 
of the classification project, describe the fMRI image 
acquisition and processing, and show the results. Finally we 
discuss possible future work to improve classification results 
further.  

II. RESEARCH DESIGN 
The following sub-sections show the step-by-step procedure 
performed for effective classification: 

A. Data Collection and Pre-Processing: 
Data from thirty-eight patients with Schizophrenia and 

thirty-one healthy controls was drawn from ongoing studies, 
with written subject consents, at the ONRC.  Healthy 
controls were required to not have a history of psychiatric 
illness, while the patients were required to meet the DSM-IV 
criteria for schizophrenia or schizoaffective disorder.  
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The following fMRI scans were collected using a 3.0 
Tesla Siemens Allegra scanner at the ONRC.  

1) A sagittal scout scan [spin echo (SE), repeat time 
(TR)=500 ms, echo time (TE)=9ms, field of view 
(FOV)=24cm, Matrix=256×256, flip angle (FA)=8°, slice 
thickness (ST)=5mm]. 

2) A T1-weighted anatomic scan (SE, TR=700ms, 
TE=12ms, Matrix=256×256, FA=8°, ST=5mm)  

3) Functional scans (gradient-echo echo-planar-imaging, 
TR=1s, TE=30ms, FOV=24cm, Matrix=80×80, FA=60°, 
ST=5mm). Acquisition of all scans took approximately 30 
minutes.  

Before performing statistical analysis, subject data was 
pre-processed using SPM2 (available at: 
http:/www.fil.ion.ucl.ac.uk/ spm/ software/ spm2/).  Pre-
processing included realignment, normalizing and 
smoothing of all subject images. Images were realigned 
using INRIalign, a motion correction algorithm unbiased by 
local signal changes. Data were spatially normalized into the 
standard Montreal Neurological Institute space, and spatially 
smoothed with a 10×10×10 mm3 full width at half-maximum 
Gaussian kernel. The data (originally acquired at 
3.44×3.44×4mm3) was re-sampled to 3.5×3.5×4.5 mm3, 
resulting in 53×63×41 voxels. 

B. ICA Algorithm: 
Figure 1 illustrates the principle of ICA of fMRI. Two 

sources are presented along with their representative 
hemodynamic mixing functions. In the fMRI data, these 
sources are assumed to be mixed by their mixing functions 
and added to one another. The goal of ICA is then to unmix 
the sources using some measure of statistical independence. 

 
Figure 1: ICA Illustration of Source separation using mixing matrices 
While standard ICA techniques are useful for analyzing 

single subjects, the Group ICA of fMRI toolbox (GIFT), 
extends the functionality of ICA to multiple subjects and 
sessions, allowing for group inferences.  This software is 
available for download at http://icatb.sourceforge.net with a 
detailed tutorial and references to over 20 successful 
publications resulting from the use of GIFT for analysis [6].    

C. Data Extraction: 
The Infomax ICA algorithm in GIFT was used to estimate 

thirty components [20].  Resting state scans are useful since 
they do not confound performance with brain activity. In 
addition, multiple groups have been able to analyze resting 
state networks using ICA, due to their consistency across 
subjects [5], [1].  

For each of the 69 subjects, images for each of the above 
components were loaded into MATLAB and voxels where 
the variance among controls and among patients was the 
least while the mean difference between patients and 
controls was the maximum needed to be extracted. 
Therefore half of the 69 subjects (20 patients, 15 controls) 
were taken to analyze differences in voxels between patients 
and controls.  Complete dataset (all 69 subjects) was not 
used because this would provide too much a priori 
knowledge about the dataset before classification. We 
included more patients than controls in the dataset due to the 
greater variability in the patient data [19].   

Once the top 500 significant voxel locations were 
determined from the sample, data from these voxel locations 
was extracted and saved from all 69 subjects.  This data was 
then sent to the Neural Network for training and testing as 
explained in the next section.    

D. Neural Network Design 
A three layer Neural network was created with 500 nodes 

in the first (input) layer, 1 to 50 nodes in the hidden layer, 
and 1 node as the output layer.  We varied the number of 
nodes in the hidden layer in a simulation in order to 
determine the optimal number of hidden nodes. This was to 
avoid over fitting or under fitting the data. Due to hardware 
limitations, ten nodes in the hidden layer were selected to 
run the final simulation.  Figure 2 shows the design of the 
Feed Forward Neural networks used in this research. 

 
Figure 2: Feed Forward Neural Network 

The 500 data points extracted from each subject were then 
used as inputs of the neural networks.  The output node 
resulted in either a 0 or 1, for control or patient data 
respectively.  Since the nodes in the input layer could take in 
values from a large range, a transfer function was used to 
transform data first, before sending it to the hidden layer, 
and then was transformed with another transfer function 
before sending it to the output layer.  In this case, a tan 
sigmoid transfer function was used between the input and 
hidden layer, and a log sigmoid function was used between 
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the hidden layer and the output layer.   
The weights in the hidden node needed to be set using 

“training” data.  Therefore, subjects were divided into 
training and testing datasets.  Out of the 69 subjects, 2 
random patients and 2 random controls were selected as 
“test data”, while the rest of the dataset was used for 
training.  Training data was used to feed into the neural 
networks as inputs and then knowing the output, the weights 
of the hidden nodes were calculated using back propagation 
algorithm.  120 trials were performed on the same Neural 
Network, selecting 65 subjects randomly every time for re-
training and 4 remaining subjects for testing to find accuracy 
of Neural network prediction.   

III. RESULTS 
Seven components (resting state networks) were used in 

the classification algorithm (see figure 3).   The following 
components were identified as being blood oxygen level 
dependent (BOLD) related resting-state networks: 
1. Component 19- Default Mode: Activations were 

observed in the posterior parietal cortex at the occipito-
parietal junction, along the mid-line in the precuneus 
and posterior cingulated cortex, and in the frontal pole 
[3], [1], 4].  

2. Component 21-Parietal: Activations were observed in 
the parietal lobe, separated by central sulcus from the 
frontal lobe, and the parieto-occipital sulcus from the 
occipital lobe [1, [14]. 

3. Component 23- Lateral and Medial Visual Cortical 
Areas: These include areas located in Calcarine sulcus 
bilaterally as well as medial and lateral extrastriate 
regions such as the lingual gyrus and the occipital pole, 
extending laterally towards the occipito-temporal 
junction [3][14]. 

4/5. Components 27/28- Dorsal Visual Stream: The 
lateralized  activations were primarily seen in the dorsal 
visual stream including left and right lateral occipital 
complex and inferior parietal cortex, bilateral 
intraparietal suclus as well as right and left-middle 
superior frontal gyri [3][14]. 

6. Component 29- Medial frontal: Activations can be 
observed between the inferior and superior frontal 
suclus and in front of the precentral sulcus [2,22]. 

7. Component 30- Temporal:  Activations in this 
component include Heschl’s gyrun, planum polare and 
planum temporale, the lateral superior temporal gyrus 
and the posterior insular cortex [2,22 [7]]. 

Figure 4 shows a histogram of components and voxel 
selections.  The x-axis values correspond to the seven 
component numbers selected and mentioned previously.  
Interestingly, most of the selected voxels came from 
component 19, or the Default Mode component.  The next 
dominant component was 29, or the Medial frontal 
component. 

 
 

Figure 3 Components Representing Various Modes 

 
Figure 4: Voxel Selection by Component 

Figure 5 shows a histogram of the resulting accuracies 
from 120 NN predictions.  As seen in the figure, the overall 
mean accuracy for the 120 trials was 75.6%.  There were 
more trials with an accuracy between 0.75 and 1 (or 75% 
and 100%), than values between 0 to 0.75.     

 
Figure 5: Accuracy Results from 120 Trials 



 
 

 

IV. CONCLUSION 
Several classification techniques have been previously 

used on fMRI data; however, classification of schizophrenic 
patients and controls using resting state data poses several 
obstacles due to lack of a task-related event, which may 
show significant differences in the activation levels of 
healthy controls from patients.  Classification was also 
performed using the timecourses’ normalized power spectral 
densities from images of all subjects as well as relating the 
correlation values of the timecourses from each of the 7 
selected components for each subject.  The results and 
repeated trials from both of the above implemented methods 
yield lesser accuracy than the method mentioned in this 
paper. The current classification mean of around 76% is also 
promising and may be further increased with larger sample 
sizes and additional variables which likely contribute to the 
heterogeneity of schizophrenia. Furthermore, this research 
takes into consideration all sub-types of Schizophrenia, 
under DSM-IV criteria.  Therefore, further sub-classification 
of individual schizophrenia types should improve accuracy 
as well.  This classification technique may also be used for 
prediction of other brain disorders as well as to determine 
the effectiveness of cognitive remediation as treatment on 
schizophrenic patients.     
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