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Abstract— Previously, electrocardiogram (ECG) signals have
been analyzed in either a time-indexed or spectral form.
The reality, is that the ECG and all other biological signals
belong to the family of multicomponent nonstationary signals.
Due to this reason, the use of time-frequency analysis can
be unavoidable for these signals. The Husimi and Wigner
distributions are normally used in quantum mechanics for
phase space representations of the wavefunction. In this paper,
we introduce the Husimi distribution (HD) to analyze the
normal and abnormal ECG signals in time-frequency domain.
The abnormal cardiac signal was taken from a patient with
supraventricular arrhythmia. Simulation results show that the
HD has a good performance in the analysis of the ECG signals
comparing with the Wigner-Ville distribution (WVD).

I. INTRODUCTION

Conventionally, electrocardiogram (ECG) signal is ana-
lyzed in the time-domain by experienced physicians. How-
ever, pathological conditions may not always be obvious in
the time-domain signal [1]. This fact has motivated the use
of frequency domain techniques, such as Fourier transform
(FT), for analysis [2]. However, as the ECG and all other
biological signals belong to the family of multicomponent
nonstationary signals [3], accurate time-varying spectral esti-
mates can be extremely difficult to obtain. However, a proper
time-frequency distribution (TFD) can deal with this problem
and reveal the multicomponent nature of such signals. The
time-frequency presentation provides information where the
time-domain and frequency-domain may fail to produce. In
particular, it uses to detect the QRS complex and arrhythmia
[4].

The Wigner-Ville distribution (WVD) was first defined by
E. Wigner in the context of quantum mechanics [5], and later
independently introduced by J. Ville for signal processing
and spectral analysis [6]. Though Wigner-Ville gives high
resolution in time-frequency domain, it is not used widely
for practical application due to the interaction between
different signal components, the so called ”cross term”.
The Wigner function cannot be directly interpreted as a
probability distribution function because, in the general case,
it is necessarily negative in some regions of phase space. For
an indirect probabilistic interpretation, a non-negative phase
space function is necessary. The phase space distribution
which is produced in simultaneous unsharp measurements of
position and momentum, can be represented as a convolution
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of the Wigner function of considered quantum state and
the Wigner function of the filter state which represents a
measuring apparatus. If the Wigner function of the filter
state is coherent state, in which coordinate and momentum
are defined by a minimum uncertainty, what corresponds
to optimal unsharp measurement allowed by the Heisenberg
uncertainty principle, the corresponding phase space function
is Husimi function. In this case the mentioned convolution of
Wigner function of a quantum state and a filter state reduces
to the absolute square of the scalar product of wave function
of a considered state and the coherent state centered at the
point (q, p) of phase space for which the Husimi function is
calculated. Both Wigner and Husimi functions are the phase
space distribution in quantum mechanics. Husimi function
is the first function to be introduced as a non-negative
distribution function [7]. In this paper, we introduce this
distribution, HD, to the analysis of biomedical signals and
mapping the phase space representations into time-frequency
representations.

II. ACQUISITION OF NORMAL AND
ARRHYTHMIA CARDIAC SIGNALS

In this study we consider two types of biological signals.
These signals are:

1) abnormal cardiac signals, ECG, for a patient with
supraventricular arrhythmia (this arrhythmia data was
obtained from the Physionet database [8]) and,

2) normal ECG signal (Lead-I).

A. Abnormal Electrocardiogram

The ECG signal has a well-defined P, QRS, T signature
that represents with each heart beat. The P-wave arises
from the depolarization of the atrium. The QRS complex
arises from depolarization of the ventricles and T-wave arises
from repolarization of the ventricle muscles. The duration,
shape and amplitude of these waves are considered as
major features in time domain analysis. Sometimes, the time
morphologies of these waves are similar. An arrhythmia is
an abnormality in the heart’s rhythm, or heart beat pattern.
The heart beat can be too slow, too fast, have extra beats,
or otherwise beat irregularly [9], [10]. Supraventricular ar-
rhythmia occurs in the upper areas of the heart and is less
serious than ventricular arrhythmia. It has irregular shapes
of QRS complexes [9].

A length of 3.9 seconds of the signal-800 from supraven-
tricular arrhythmia database was converted into digital forms
by Matlab and processed by the TFD. The sampling fre-
quency for this signal is 128 samples/second. The QRS



complexes in this signal are wide and abnormal, while the
T-wave has disappeared. A TFD with high resolution is vital
and crucial in this sort of signal [11].

B. Normal ECG Signal

In this measurement, Lead-I electrodes was connected to
BIOPAC systems, ECG module. The ECG module (ECG
100C) consists of instrumentation amplifier (IA) and a 50 Hz
notch filter. The IA gain was set to 1000. The ECG data were
recorded by using AcqKnowledge software (v.3.7.1, BIOPAC
Systems, Inc., CA) in ASCII text files and processed by
programs written in Matlab. The sampling rate for ECG was
set to 200 samples/second.

III. HUSIMI AND WIGNER-VILLE DISTRIBUTIONS

A TFD that provides a good reduction of the cross-terms
is needed to make sure that the off-diagonal elements of
the TFD matrix of the sources are negligible and so that a
diagonal structure can be maintained. The continuous time-
frequency distribution of the analytic signal z(t) associated
with the original real signal s(t) can be expressed as follows
[12], [13]

ρ(t, f ) = F
τ→ f

[G(t,τ)∗
t
Kz(t,τ)] (1)

where Kz(t,τ) = z(t + τ/2)z∗(t − τ/2) is the instantaneous
autocorrelation product, F is the Fourier transform, G(t,τ)
is the time-lag kernel, and ∗

t
denotes time convolution. It is

well-known that the kernel can completely characterize the
TFD and its properties (e.g., resolution) [13].

In this study we introduce the Husimi distribution to time-
frequency analysis of biological signals and compare its
performance with WVD.

A. The Wigner-Ville distribution

The Wigner - Ville distribution (WVD) of a continuous
signal z(t) is defined as [14]

WV (t, f ) =
∫ ∞

−∞
z(t +

τ
2
)z∗(t − τ

2
)e− j2π f τ dτ (2)

where f is the frequency variable. The WVD satisfies a large
number of desirable mathematical properties. In particular,
WVD is always real-valued, it preserves time and frequency
shifts and satisfies the marginal properties. Based on (1), the
WVD, which utilizes a time-only kernel G(t,τ) = G(t) =
δ (t) with g(ν ,τ) = g(ν) = 1, has significant oscillatory
cross-terms without a controlling factor, where the cross-
terms can be larger in amplitude than the auto-terms.

B. Husimi Distribution

Wigner and Husimi functions are the phase space distribu-
tion in quantum mechanics. They provide a two-dimensional
picture of a one-dimension wave-function, and can be com-
pared directly with classical phase space distributions [15].
The Husimi distribution function can be given in terms of
WVD as follows

H(t, f ) =
∫ ∞

−∞

∫ ∞

−∞
WV (t −u, f − v)e−au2−bv2

du dv (3)

where a = 1
∆u , b = 1

∆v , WV (t, f ) is Wigner-Ville distribution
and ∆u.∆v ≤ 1

2π . Eq. (3) can be re-written in the following
form

H(t, f ) =
∫ ∞

−∞

∫ ∞

−∞
WV (t −u, f − v)x(u)h(v)du dv. (4)

We can further reduce eq. (4) to the following form

H(t, f ) = x(t)∗
t

[
h( f )∗

f
WV (t, f )

]

= γ(t, f )∗
t
∗
f
WV (t, f ) (5)

where γ(t, f ) = F
τ→ f

[G(t,τ)]. Based on the general formula

of Cohen’s class in (1) we can get the kernel for Husimi
distribution as follows

G(t,τ) = e−at2
√

π
b

e
−π2

b τ2
(6)

where τ is the time lag. The resolution and cross-terms
reduction of Husimi function depends on the values of ”a”
and ”b” in (6).

IV. RESULTS AND DISCUSSION: A COMPARISON
OVER NORMAL AND ABNORMAL CARDIAC

SIGNALS

In this section, we compare the performance of the pro-
posed distribution with WVD over normal and abnormal
cardiac signals.

A. A comparison over Abnormal ECG of a Patient with
Supraventricular Arrhythmia

A length of 3.9 seconds of the signal-800 from supraven-
tricular arrhythmia database was converted by Hilbert trans-
form into its analytical forms and processed using the
proposed distribution, HD, and the WVD. This signal has
normal QRS complexes duration of 0.1 second width and
a short P-R interval. The QRS complexes have irregular
shapes.

Figs. (1) and (2) show the time and 3D time-frequency
representations of this signal utilizing HD and WVD, re-
spectively. The proposed distribution manages to detect the
three QRS complexes in the signal with their exact shape,
however, the WVD fails to track changes in the frequency
components of the QRS complex of this signal due to cross-
terms. All frequency components in this signal are clearly
revealed by the proposed distribution, HD.

B. A comparison over Normal ECG Signal

A normal ECG signal of length 4.9 seconds was converted
by Hilbert transform into its analytical forms and processed
using the HD and the WVD. Figs. (3) and (4) show the time
and 3D time-frequency representations of this signal, normal
ECG, utilizing HD and WVD, respectively. Also from these
figures, we observe that the HD has best resolution, as it can
reveal the frequency components of the normal ECG signal
with a resolution much higher than that given by WVD. The



Fig. 1. Time and 3D time-frequency representations of the
supraventricular arrhythmia signal using HD. The sampling fre-
quency was fs = 128 samples/second. For HD, a = 0.02 and b =
1000.

Fig. 2. Time and 3D time-frequency representations of the
supraventricular arrhythmia signal using WVD. The sampling fre-
quency was fs = 128 samples/second.

cross-terms in WVD make the task of identifying the QRS
peaks and T-wave extremely difficult.

V. CONCLUSIONS

This paper introduced the Husimi distribution (HD) to
biomedical signal processing and in particular to time-

Fig. 3. Time and 3D time-frequency representations of the normal
ECG signal using HD. The sampling frequency was fs = 200
samples/second. For HD, a = 0.02 and b = 1000.

Fig. 4. Time and 3D time-frequency representations of the normal
ECG signal using WVD. The sampling frequency was fs = 200
samples/second.

frequency representation of biological signals. Husimi dis-
tribution is a popularly function used in quantum physics.
The performance of HD over normal and abnormal cardiac
signals was compared with that of the WVD. In case of
normal and abnormal signals (a patient with supraventricular
arrhythmia), the HD outperforms the WVD in terms of time-
frequency resolution in this analysis. The high resolution of



the HD in revealing the location in the joint time - frequency
plane of the QRS complexes is useful in cardiac abnormality
detection. The cross terms in the WVD make the task of
identifying the QRS peaks and their actual shape extremely
difficult, where the cross terms in some figures are larger in
amplitude than the auto-terms.
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