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Abstract— We present a method for simulation of DNA-
laden flows in complex microscale geometries. In this
method an incompressible Newtonian fluid is discretized
with a finite difference method in the interior of the
domain and a Cartesian grid embedded boundary/volume-
of-fluid method is used near the boundary. The DNA is
represented by a bead-rod polymer model. The fluid and
polymer are fully coupled through a body force repre-
senting hydrodynamic drag. The main objective in this
work is to implement short range forces to properly model
polymer-polymer and polymer-surface interactions. We
will discuss two methods for these interactions: (1) a new
rigid constraint algorithm whereby rods elastically bounce
off one another, and (2) a classical (smooth) potential
acting between rods. In addition, a smooth potential for
the polymer-surface interactions is also implemented for
comparison to the same interactions currently modeled by
elastic collision.
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I. INTRODUCTION

Microfluidic devices are increasingly important
in biodefense and biomedical applications including
pathogen detection, continuous monitoring, and drug
delivery. Numerical algorithms that can model flows of
complex biological fluids within these devices are needed
for further development and optimization. For example,
a technique for “sticking” is necessary to model the
capture of DNA in an extraction chamber from whence a
PCR process begins. This phenomenon requires model-
ing of short-range interactions between large molecules
and a (smooth) structural surface. In addition, biological
fluids are usually polymeric, a solvent consisting of
multiple, large particles which undergo self-interactions
as well as interactions with other particles. The poly-
mer model and these short-range interactions must be
physically appropriate for there to be fidelity in the
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simulation of transport. Furthermore, the problem is
complicated due to the small time scale of the short-
range interactions being much smaller than that of the
bulk fluid, necessitating multiscale schemes.

In previous work we developed a model that coupled
bead-rod polymers to an incompressible viscous solvent
[1]. We took care to conservatively couple the polymer
and solvent forces – both viscous and stochastic – in
order that the fluid “feel” the effect of the polymer.
It is in this sense of obeying Newton’s third law of
motion that we consider the dynamics to be “tightly
coupled”. (The purpose of the full-coupling is to be able
to simulate the effects of a large number of polymers
and to compare this hybrid approach with a viscoelastic
continuum model in other work.) Additionally, the poly-
mer nodes may experience elastic collisions with domain
boundaries. With this numerical algorithm, we have been
able to simulate polymer-boundary interactions which
occur in DNA size-separation and extraction devices as
well as obtain preliminary results for more complicated
2D and 3D device geometries [2].

Our previous model captures many essential features
observed in DNA visualization experiments [3]. In par-
ticular, the molecule tends to extend in regions of large
shear flow, and contract in its absence. However, to
model the (probable) fate of individual molecules in
microfluidic systems or biological flows, it is desirable
to incorporate more physically-realistic behavior. For
polymer models of DNA, of immediate concern is the
non-crossing constraint: a polymer section cannot pass
through another polymer section. In our previous freely-
jointed bead-rod model, as with many other current
implementations (e.g., [4]), crossing of rod sections
is allowed. We treated polymer-surface interactions as
purely elastic collisions, and we do not treat polymer-
polymer interactions. In particular, there is no rod-rod
non-crossing constraint. The resulting behavior has a
strong theoretical foundation (e.g., [5]) and is there-
fore important for algorithm validation, but does not
respect the correct non-crossing physical behavior of real
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molecules. In this paper we will explore this crossing
problem using rigid constraints.

Macromolecules like DNA are charged, and chemi-
cally active. They interact through screened Coulombic
interactions and migrate in response to imposed electric
fields. Furthermore, microfluidic separators have been
designed based on the increase of residence time with
molecule length in packed bed and pillared array ge-
ometries, or through chemically-mediated residence time
enhancement achieved by binding selective proteins to
channel surfaces. These physical effects are character-
ized by intra-polymer, inter-polymer, and polymer-wall
interaction potentials which may be long-ranged. We will
also implement a soft penalty method where Coulombic
interactions using a short-range Debye-Hückel potential
are incorporated into a classic repulsive potential.

A preliminary version of this work can be found in
[6].

II. METHOD

A. Rod-rod Uncrossability Constraint

The rod-rod uncrossability constraint works by de-
tecting rod-rod collisions and treating them as elastic
collisions between infinitely thin rods. It is similar to
the bead-surface uncrossability constraint already imple-
mented in [1]. The algorithm is outlined below as an
extension to the existing algorithm in [1]. Steps 1, 2,
and 4 are described in more detail in [1]. The ideas for
steps 3a-3d have been taken from [7]. In that work bonds
are considered as elastic bands between bonded particles.
When any two of these elastic bands make contact, an
entanglement point is created which prevents them from
crossing.

The polymer is represented by a series of beads con-
nected by rigid rods. The bead positions and velocities
are given by x and v respectively. Rod i is defined as
the line segment from bead i to bead i + 1, or from xi

to xi+1.
For each time step, beginning with x

n and v
n:

1) Calculate the unconstrained motion to obtain x
∗

and v
∗.

2) Calculate the motion subject to the rod length
constraint to obtain x

† and v
†.

3) Calculate the motion subject to the rod-rod un-
crossability constraint to obtain x

‡ and v
‡. The

details of this step are as follows:
Calculate v

∆t, the bead velocities over the current
time step

v
∆t = (x† − x

n)/∆t (1)

so that the time-linear trajectory of each bead over
the current time step is

x = x
n + v

∆tt t ∈ (0, ∆t) (2)

Repeatedly loop through all rod pairs until no more
collisions are detected. For each pair of rods i and
j:

a) Calculate the triple product Vij at times 0 and
∆t where

Vij = (xi−xj) · ((xi+1−xi)× (xj+1−xj))
(3)

The value of Vij will be zero if the infinite
lines containing the rods intersect or are par-
allel. Therefore, if the value of Vij changes
sign over the time step, a possible rod-rod
crossing has occurred. Otherwise, proceed to
step 3k.

b) Calculate τ , the time of crossing. Substituting
the time-linear trajectories of (2) into (3)
gives a third-order polynomial in t for Vij .
The smallest root of this polynomial in the
range (0, ∆t) will be τ .

c) Calculate x
τ , the bead positions at time τ .

x
τ = x

n + v
∆tτ (4)

d) Calculate χ, the point of intersection at time
τ , by solving the following set of equations:

χ = x
τ
i +λi(x

τ
i+1−x

τ
i ) = x

τ
j +λj(x

τ
j+1−x

τ
j )

(5)
where λi and λj define the point of inter-
section between the lines containing rods i
and j respectively. If (0 ≤ λi ≤ 1) and
(0 ≤ λj ≤ 1) then the point of intersection
lies on both rods and a rod-rod crossing has
occurred. Otherwise, proceed to step 3k.

e) Calculate n, the unit vector normal to the
plane formed by the two rods at time τ

n =
(xτ

i+1 − x
τ
i ) × (xτ

j+1 − x
τ
j )

|(xτ
i+1 − x

τ
i ) × (xτ

j+1 − x
τ
j )|

(6)

f) Calculate v
∆t
rel , the relative velocity of the

intersection point over the current time step

v
∆t
rel = (v∆t

j − v
∆t
i ) + λj(v

∆t
j+1 − v

∆t
j )

−λi(v
∆t
i+1 − v

∆t
i ) (7)

g) Calculate v
col, bead velocities after collision

v
col
i = v

∆t
i + 2(1 − λi)(n · v∆t

rel )n (8)

v
col
i+1 = v

∆t
i+1 + 2λi(n · v∆t

rel )n (9)

v
col
j = v

∆t
j − 2(1 − λj)(n · v∆t

rel )n (10)

v
col
j+1 = v

∆t
j+1 − 2λj(n · v∆t

rel )n (11)
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h) Update positions for beads i, i + 1, j, and
j + 1

x
‡ = x

τ + (∆t − τ)vcol (12)

i) Calculate v
†
rel, the relative velocity of the

intersection point using velocities at the end
of time step

v
†
rel = (v†

j − v
†
i ) + λj(v

†
j+1 − v

†
j)

−λi(v
†
i+1 − v

†
i ) (13)

j) Update bead velocities at the end of the time
step

v
‡
i = v

†
i + 2(1 − λi)(n · v†

rel)n (14)

v
‡
i+1 = v

†
i+1 + 2λi(n · v†

rel)n (15)

v
‡
j = v

†
j − 2(1 − λj)(n · v†

rel)n (16)

v
‡
j+1 = v

†
j+1 − 2λj(n · v†

rel)n (17)

k) If no collision occurs, then for beads i, i+1,
j, and j + 1

v
‡ = v

† (18)

x
‡ = x

† (19)

4) Calculate the motion subject to the bead-surface
uncrossability constraint to obtain x

n+1 and v
n+1.

This 3D algorithm can be extended to 2D by considering
bead-rod collisions where the bead is treated as a rod
perpendicular to the 2D plane with its position on the
2D plane.

B. Repulsive Potential

The algorithm for a repulsive potential interaction
between rods is taken from the work of Kumar and
Larson [8]. The shortest vector between two rods is
calculated, and a repulsive force is applied to both rods
along that vector. While Kumar and Larson explored
the use of an exponential potential and a Lennard-Jones
potential, this work uses a short-ranged Debye-Hückel
potential:

UDH = A
e−κr

r
. (20)

For polymer-surface interactions, the same algorithm was
applied using the shortest vector between a rod and the
level set boundary defining a surface. It should be noted
that while the mathematically correct introduction of
these forces is directly into the Langevin equation, we
initially introduced these forces after the rod length con-
straint to avoid complexities in the Ito-Taylor expansion
of [1].

III. RESULTS AND DISCUSSION

We simulated a variety of polymer lengths and com-
binations of rigid constraint and soft potential inter-
actions. The polymer-surface interactions are based on
the level set boundary; the flow geometry is based on
the embedded boundary. For low grid resolution the
difference between the embedded boundary and the level
set boundary representations of a physical surface is
visually obvious. For higher resolution the difference
between the embedded boundary and the level set bound-
ary is not visually obvious. Considering polymer-surface
interactions, the repulsive potential is more stable, but
the rigid constraint allows the polymer to get closer to
the pillar resulting in slower motion due to lower fluid
velocities near the boundary. In general, as the number
of beads in the polymer increased, the particle time
step control had to be decreased in order to maintain
convergence in the constant rod length constraint routine.
This may be due to the beads being in a greater range
of fluid velocities resulting in more stretching along
the rods. For 100-bead polymers, a value of 1.0 was
adequate; for 200-bead polymers, 0.1.

Figure 1 is a time sequence of single polymer transport
in a 2D microscale flow with a cylindrical pillar ob-
struction that demonstrates intra-polymer and polymer-
structure interactions using the smooth potential. In the
first frame the polymer is randomly placed to be nearly
entangled before flowing into the cylinder. Frame 2
shows a short-range interaction of the polymer with
the cylinder surface while also undergoing inter-polymer
interactions. The polymer accelerates around the pillar in
the third and fourth frames due to Brownian perturbation
keeping it off the surface and nudging it out into the
boundary layer where it is pulled by hydrodynamic drag.
As the polymer approaches the near-stagnation wake
region behind the pillar the head of the polymer begins
to slow down allowing the tail to catch up in the fifth and
then sixth frames. Re-entanglement occurs in the wake
where numerous intra-polymer interactions occur.

IV. CONCLUSION

We have developed a new method based on a rigid
constraint system for preventing rod-crossing in bead-rod
polymer models in 2D and extensible to 3D. It compares
well with a method based on classical repulsive poten-
tials with Coulombic screening. The smooth potential is
currently computationally less expensive than the rigid
constraint. Potentials need only be evaluated once per
rod pair, whereas the rigid constraint must loop over and
over until all collisions have been treated. Furthermore,
the rod-rod uncrossability constraint loops through all
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Fig. 1. Time sequence of 200-bead polymer flowing past a cylinder in 2D demonstrating intra-polymer and polymer-structure interactions
using smooth potential. (a) Nearly entangled polymer. (b) Short-range polymer-surface interaction. (c) Acceleration around pillar due to
Brownian perturbation and hydrodynamic drag. (d) More acceleration of the tail and slowing of the head in stagnation region in wake of
pillar. (e) Accelerated tail catching up with stagnated head. (f) Re-entanglement in wake with multiple intra-polymer interactions.

rod-rod pairs treating collisions as they are found. This
does not always lead to correct results. The algorithm
still needs to be modified so that it searches all rod-
rod pairs for the first occurring collision, treats it, then
searches all rod-rod pairs for the next occurring collision,
treats it, etc., being careful to maintain the proper v

∆t

and v
col. Combining the rod-rod and rod-surface uncross-

ability constraints into the same algorithm would be a
more correct approach. There may also be exceptional
cases not accounted for by the rod-rod uncrossability
constraint (e.g., parallel rods). The forces resulting from
potential interactions should be introduced directly into
the Langevin equation. We introduced these forces after
the rod length constraint to avoid complexities in the Ito-
Taylor expansion as in [1]. It remains to be shown that
the rod-rod uncrossability constraint conserves kinetic
energy.

With the addition of these new force interactions,
as expected, new high-frequency modes are introduced
which limit stability and accuracy, necessitating adap-
tive time stepping strategies. Already we have seen
this as a side-effect of the Rouse ball-spring polymer
model. To address that problem we have considered
decoupling the polymer and the fluid solvent time steps;
this allows the relatively inexpensive polymer model
to march forward with small time steps, resolving the
high-frequency modes, while the very expensive fluid
calculation marches forward with the greatest stable time
step. Inclusion of long-range Coulombic interactions
may increase the cost of polymer dynamics sufficiently
that decoupling the time step is not a desirable strategy.
Or, perhaps a partitioning of the Coulombic terms, as in
the Ewald method, into short-range parts (resolved at the
particle time scale) and long-range parts (resolved at the
fluid time scale) can strike a good performance-accuracy

trade-off.
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