
 
 

  

Abstract— Brain-machine interfaces (BMIs) have shown 
promise in augmenting people’s control of their surroundings, 
especially for those suffering from paralysis due to neurological 
disorders. This paper describes an experiment using the rodent 
model to explore information available in neural signals 
recorded from chronically implanted intracortical 
microelectrode arrays. In offline experiments, a number of 
neural feature extraction methods were utilized to obtain 
neural activity vectors (NAVs) describing the activity of the 
underlying neural population while rats performed a 
discrimination task. The methods evaluated included standard 
techniques such as binned spike rates and local field potential 
spectra as well as more novel approaches including matched-
filter energy, raw signal spectra, and an autocorrelation energy 
measure (AEM) approach.  Support vector machines (SVMs) 
were trained offline to classify left from right going movements 
by utilizing features contained in the NAVs obtained by the 
different methods. Each method was evaluated for accuracy 
and robustness. Results show that most algorithms worked well 
for decoding neural signals both during and prior to 
movement, with spectral methods providing the best stability. 

I. INTRODUCTION 
ver the past few decades brain-machine interfaces 

(BMIs) have been designed to control many types of 
outputs, including computer cursors, robotic arms, and 

selection of letters from an onscreen keyboard [1]. The main 
neural signal recording approaches include non-invasive 
surface electrode recording of the electroencephalogram 
(EEG), or the more invasive intracortical microelectrode 
array approach. Both techniques have shown promise in 
various applications. Although EEGs are inexpensive and 
safe, they are limited to low frequency recording and low 
spatial resolution because of the filtering effect of the skull 
and skin [2]. The most invasive technique, intracortical 
implantation, uses electrode arrays buried inside the brain to 
record the action potential and local field activities of 
neurons near the recording tips. Because of the high speed 
and high resolution interface with the brain, the research 
described in this paper deals with intracortical implant-based 
BMIs [3].  

The main feature-extraction method used by current BMI 
systems is binned spike firing rates. To estimate the spike 
rates, neural action potential events (spikes) are detected 
within background noise by imposing a voltage threshold on 
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each channel.  When the amplitude of the signal crosses the 
threshold, a spike is registered at that time index, and the 
estimate of the spike rate comes from the number of 
threshold crossings within fixed time bins. 

From low pass filtered versions of the continuously 
recorded signal local field potentials (LFPs) can be obtained.  
LFPs are low frequency cortical oscillations, believed to 
represent the summed synaptic input currents to the neurons 
in the vicinity of the electrode.  LFPs have shown good 
longevity and information rates comparable to rates from 
binned spikes [4].  

Another recent and novel method for forming a neural 
activity vector is the autocorrelation energy measure (AEM) 
[5].  This approach samples local populations of neurons like 
the LFP method, but uses the estimated autocorrelations of 
local neurons and “noise” to estimate the amount of signal 
energy that is due to neural activity, potentially offering 
better longevity than binned spikes as neural signal power 
drops below the noise power over time.  

The experiments described in this paper were designed to 
directly compare several literature-standard feature-
extraction methods like binned spike rates and LFPs 
alongside the newer AEM and spectral methods. The overall 
project involved recording neural signals from a rat moving 
left or right in response to a visual stimulus and testing the 
offline accuracy and robustness over time of various feature-
extraction methods in classifying the direction of the rats’ 
movement.  This forced-decision paradigm was ideal for 
testing the accuracy of the different neural activity vector 
(NAV)-forming methods in binary classification (cf. [6]).  
Results show that the AEM algorithm performs quite well 
compared to the other feature-extraction methods. 

II. MATERIALS AND METHODS 

A. Subjects 
Three Sprague-Dawley rats (Harlan; weighing between 

400 and 550 grams) were implanted for the study.  All 
procedures and protocols followed NIH guide for the Care 
and Use of Animals and were approved by Penn State’s 
Institute for Animal Use and Care Committee (IACUC).  
The rats were placed on a limited water schedule, and 
maintained on a modified light-dark cycle to ensure that 
their period of highest wakefulness (early nocturnal) 
coincided with the experimental sessions. 

B. Behavioral Paradigm 
The rats were trained in an operant conditioning chamber 

which had a retractable water tube and three nose-pokeholes. 
Each pokehole was equipped with infrared sensors and a cue 
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light.  The rats were trained to wait in the center pokehole 
while either the left or right target cue light was briefly 
flashed, after which the rat would have to enter the correct 
target pokehole to receive the reward (Fig. 1). 

This waiting period in the center pokehole was designed to 
force the rat to make its decision before the actual movement 
and to potentially enable the recording of a pre-movement 
‘intent’ signal.  The research described in this paper makes 

use of both ‘pre-movement’ neural data from the 300ms 
window just prior to leaving the center pokehole, and 
‘during-movement’ neural data from the 300ms window just 
prior to entering the target pokehole (Fig. 2). 

 

C. Electrode Implantation and Neural Recordings 
 The rats were implanted when they were acquiring water 
rewards in approximately 75% of the initiated trials.  
Subjects R16 and R17 were implanted unilaterally in 

primary motor cortex and subject R19 was implanted with 
two arrays (bilaterally) in premotor cortex.  The microwire 
electrodes were hand fabricated and sterilized by gamma 
radiation.  Each electrode had four rows of four polyimide-
insulated 50µm tungsten microwires, spaced at 
approximately 500µm. The surgical implantation of the 
intracortical electrodes was performed under sterile 
conditions using standard protocols [6].  

A commercial multi-channel acquisition system (Tucker-
Davis Technologies) was used to collect simultaneous neural 
recordings from the electrodes of chronically implanted 
animals. After a head-mounted unity-gain buffering stage, a 
bio-amplifier (Medusa, TDT) digitized the signals at 25 kS/s 
and 16-bits. Continuous signals were digitally filtered in a 
DSP unit (Pentusa, TDT), down-sampled at 12 kS/s and 

streamed to a PC for offline analysis.  The electrode 
impedances were also measured at 1 kHz with an electrode 
impedance meter (Bak Electronics).  

D. Feature Extraction 
The main analysis involved training a support vector 

machine (SVM) classifier on the processed data from the 
pokehole transition intervals to measure accuracy in 
predicting left and right movements. 

Three processed versions of the original digitized neural 
signal were extracted and stored to disk.  One version 
contained threshold-detected spikes (timestamps and 32-
point waveform snippets; 25kS/s sampling), with the 
threshold adjusted manually in the neighborhood of two 
standard deviations from the signal mean for optimum 
detection.  The second version was bandpass-filtered from 
10 to 50 Hz and stored at 381 S/s, comprising the local field 
potential signals (LFP).  The third version was bandpass-
filtered from 300 to 5000 Hz and stored at 12.207 kS/s, 
picking up the higher spectral content of the neural action 
potentials in undecimated ("raw") waveform format.  Also 
stored were the times of all pokehole entrances and exits, the 
on and off times of all cue lights, and the extension and 
retraction times of the reward. 

From the three signal versions recorded, six different 
feature vectors (also called neural activity vectors, or NAVs) 
were generated for each pokehole-transition event, as 
depicted in Fig. 3. When analysis began, 28 recording blocks 
containing all three signal versions were hand-picked for 
investigation.  This manual selection ensured reasonable 
minimum block length and reasonably good signal quality 
on valid channels. Each selected block was typically at least 
two minutes long and contained more than 30 total pokehole 
transitions. Four blocks were chosen from R16 performing 
the task over a 12 day period, fifteen blocks from R17 
spanning 23 days, six blocks from R19U (left side) spanning 
11 days, and three blocks from R19L (right side) spanning 9 
days. 

The Binned-spikes method (SPK) estimated spike firing 
rates by counting the number of (unsorted) spikes over 30ms 
time bins. The FFT on LFP method (fLFP) used smoothed 
FFT values from the 10-32 Hz frequency band as the SVM 
vector.  The FFT on Raw-waveform (fRaw) method was the 
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Fig. 3. Six Feature-Extraction Methods 

Fig. 1.  Diagram of nose-poke hole set-up. 
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Fig. 2.  Timing diagram describing behavioral paradigm 



 
 

same as the fLFP method except that it used the 100-300 Hz 
frequency band. These bands were selected for best 
discrimination by inspection of the average FFT difference 
between leftgoing and rightgoing trials on a typical 
recording block. The block-autocorrelation energy measure 
(bAEM) and Low-level autocorrelation energy measure 
(LAEM) used spectral information to estimate the fraction of 
signal energy that was due to neural action potentials [5].  
LAEM was identical to bAEM except that it first removed 
spikes using a threshold. The Matched-filter energy method 
(MF) first created a filter template by averaging several 
thousand above-threshold spikes (8ms duration, aligned-
peaks), for each channel.  The template was then applied as a 
matched-filter on the incoming 30ms chunks of data.  The 
RMS energies of each chunk of filtered data became the 
SVM vector.   

In all the methods, the 10-point vectors generated from 
each of the 16 electrodes were joined to form the full 160-
point vector for each pokehole-transition event. 

E. Classification and Validation 
The SVM classifier used a nonlinear radial basis function 

as a kernel to implicitly transform the 160-dimensional input 
vectors into a higher dimensional space in which the 
decision boundary was linear. Kernel-width and margin 
parameters were simultaneously optimized by an exhaustive 
search through logarithmic scales, computing 100 
classifications per parameter combination and taking the 
mean prediction-accuracy value across all recording blocks 
as the performance indicator. 

After computing the six types of NAVs for each pokehole 
transition interval in the 28 recording blocks, each NAV set 
was shuffled and subjected to twofold validation: half of the 
feature vectors were used to train the classifier, and the other 
half were used for testing.  The random shuffling was 
repeated 10 times and the mean test accuracy saved for 
comparison. 

The cross-validations were computed in two different 
ways: within-block and across-block.  The within-block 
classifications trained the SVM on a subset of the data from 
a particular recording block and tested the SVM on the 
remainder of that data.  The across-block classifications 
trained the SVM on all of the data from a particular 
recording block and tested the SVM on all of the data from a 
different recording block (several days distant), providing a 
measure of robustness-over-time of the different NAV 
algorithms.     

III. RESULTS  
 The accuracies for within-block classifications based on 

“movement” data are shown in Fig. 4, and the accuracies for 
within-block classifications based on “pre-movement” data 
are shown in Fig. 5. A direct comparison of the classification 
accuracies based on data from movement or pre-movement 
periods is shown in Fig. 6. 

The across-block mean classification accuracies for 
movement data are shown in Fig. 7, separated by rat (Rat 17 
had the most data, Rat 16 had the least data; Rat 19 had left 

and right bilateral implants, labeled R19U and R19L, 
respectively).  All NAV methods are shown except bAEM, 
which was almost identical to LAEM.  The across-block 
accuracies for pre-movement data are not shown, but these 
accuracies generally tapered off to 50% (chance level) after 
time intervals of only one day, in all rats.  

IV. DISCUSSION AND CONCLUSION 
As shown in Figs 4 and 5, the classification performance 

of the SVM on each NAV method was quite good, 

5 1 0 15 2 0 2 5

0 .6

0 .8

1
S p k 

5 1 0 1 5 20 2 5

0 .6

0 .8

1
b AE M

5 1 0 15 2 0 2 5

0 .6

0 .8

1
LAE M

B lo ck  N um b e r

C
la

s
s

if
ic

a
ti

o
n

 A
c

c
u

ra
c

y

5 10 1 5 2 0 25

0 .6

0 .8

1
M F   

5 1 0 1 5 20 2 5

0 .6

0 .8

1
fR a w

5 10 1 5 2 0 25

0 .6

0 .8

1
fLF P

Fig. 4.  "Movement" within-block mean classification 
accuracies for twofold cross-validation for each NAV method 
and for each recording block, with standard error (SE) bars. 

Fig. 5.  "Pre-movement" within-block mean classification 
accuracies for twofold cross-validation for each NAV method 
and for each recording block, with standard error (SE) bars. 

Fig. 6.  Within-block mean classification accuracies for movement 
data (left) and pre-movement data (right), with SE errorbars. 
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especially for the neural data collected while the animal was 
moving.  The within-block classifications were quite 
accurate overall.  Even for the premovement case, the mean 
classification accuracies were all significantly above chance 
(independent-sample Student’s T test on the worst-
performing fLFP compared against 50% gave T=12.5, 
p<0.0001).   

For the across-block classifications (Fig 7), most NAV 
methods showed good performance at short time lags 
between the training and testing sets, but tapered off in 
accuracy rapidly as the time between training and testing 
sets grew larger than one or two days.  Furthermore, the 
classification accuracy for data recorded during movement 
were higher on average than for premovement data.  This 
may simply reflect differences in the strength of the neural 
modulation, or there may be other higher-level causes for the 
drop in accuracy after time such as movement of the 
electrodes relative to certain trained neurons or even 
neuroplastic retraining of the nearby neurons. 

Comparing the means of the different NAV method 
accuracies for across-block movement data showed that both 
the mean MF accuracy and the mean fRaw accuracy 
were significantly greater than the mean SPK accuracy 
classification (T=6.32, p<0.001, and T=6.68, p<0.001, 
respectively). This suggests that the MF and fRaw spectral 
NAV methods are more robust neural features across days 
than binned spikes. 

The novel Low-level AEM algorithm generally performed 
well in extracting usable neural response information from 

recordings, even after the spikes had been cropped out, 
suggesting the potential for continued usefulness in long-
term BCI applications after encapsulation occurs.  In fact, 
for premovement data, the Low-level AEM algorithm 
performed even better than the other methods (Figure 6), 
possibly because the prior cropping of large amplitude 
spikes removed other non-neural voltage artifacts that were 
detrimental to left-right classification.   

Traditional methods such as binned spikes and FFT on 
LFP generally performed well in the experiment, concurring 
with previous research that these methods are useful in BMI 
work [6, 7].  Although FFT on LFP tended to provide the 
lowest classification accuracies (Figure 6), this performance 
could possibly be improved by further research into the best 
parameters (FFT length, frequency band, vector length, 
SVM parameters, etc.) for optimal performance.  

Another conclusion is that spectral methods provide just 
as much discriminatory information as the thesholded-spike 
method during movements.  This is significant for several 
reasons.  First, spectral methods such as matched filtering 
could be computationally easier than spike thresholding if 
the sorting of spikes is required.   Second, spectral methods 
show promise to be more robust than spike thresholding as 
spike amplitudes decrease with electrode encapsulation.  The 
excellent performance of the "FFT on Raw" method may be 
partially attributable to the supervision available in picking 
the best left/right discriminatory frequency band, since the 
other feature extraction methods did not utilize task-specific 
information in this manner.  

Fig. 7. Across-block mean classification accuracies for movement data (SE errorbars). 
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A final conclusion is that the neural data from both 
movement periods and premovement periods could be 
successfully classified offline by these methods, suggesting 
that the classifiers were extracting intentionality information 
and not just muscle activation information.  This is tentative 
because there is always the possibility that the classification 
was based on tiny invisible muscle movements or sensory 
processing rather than true neural intent.  However, the 
classification prior to task-related movement is a very 
positive result, and an important step toward human BCIs, 
where muscle activation information will not always be 
available. 

In summary, experimental results show that while there 
was no clear best feature-extraction method for all 
circumstances, spectral methods such as matched-filter 
energy and FFT on the continuous signal provided the most 
robust accuracies across multiple days.  The SVM-
classification system based on features extracted from motor 
cortex delivers the capability to predict a rat’s behavior in a 
forced binary choice paradigm with excellent accuracy. 
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