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Abstract— This paper presents a fuzzy approach for contrast
enhancement, based on two multi-scale transforms, namely
wavelet and contourlet transforms. Separability and nondi-
rectionality of conventional 2D wavelet transform, makes it
unsuitable for sparsely representation of curve or line shaped
image objects. On the other hand, the contourlet transform is
a good alternative for this purpose. In this paper, coefficient
enhancement, both in wavelet and contourlet spaces, is carried
out by making use of simple fuzzy rules. These rules make
the enhancement procedure more understandable and flexible.
With this method, the knowledge and experience of the expert
from the distribution of the coefficients can also be used in
designing better enhancement functions. The proposed method
is applied to both mentioned separable and nonseparable trans-
forms. Implementation results demonstrate that this approach
is very effective both in wavelet and contourlet spaces.

I. INTRODUCTION

Since some features are hardly detectable by eye in an
image, we usually try to enhance these features. Histogram
equalization [1] is one of the most well-known methods for
contrast enhancement. This technique makes use of global
statistical information of the image and is not capable of
diagnosing the local variations. These local variations are
usually called ”edge”. Edge in the image is one of the most
important features; one can use to construct the whole image.
Therefore, enhancing the edges can result in enhancement
of the entire image. These changes usually constitute the
high frequency part of the image. So, one way for image
contrast enhancement is to enhance or amplify the amplitudes
of these high frequency features. Unsharp masking [2] is a
simple Laplacian based contrast enhancement technique in
this way. One important problem of using these high-pass
filters is the enhancement of noise in noisy environments.
Wavelet transform is one way to overcome this problem. The
sparsity of this transform is more than Fourier transform and
by simple thresholding, it is efficiently capable of removing
or reducing white Gaussian noise from the signal. Different
wavelet based contrast enhancement methods are proposed
in the literature [3]. Because, conventional 2-D wavelets are
produced by tensor product of 1-D wavelets, the wavelet
transform can only identify pointwise discontinuities [4]. In
other words, this transform is not capable of diagnosing the
direction of any line-shaped edge in the image. In these
cases, the sparsity reduces, when separable nondirectional
transforms are used for image representation. Therefore, to
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properly represent this kind of directional discontinuities,
non-separable directional transforms are needed. Recently in-
troduced Contourlet transform [5] is one of these transforms,
applicable for edge based contrast enhancement.

In this paper, we propose a new fuzzy method for image
contrast enhancement by means of contourlet transform. The
fuzzy approach is simple, more understandable and more
flexible, than other enhancement procedures proposed up to
now. The enhancement function is also applied to wavelet
coefficients. Implementation results are also compared with
each other and with histogram equalization method. In
following sections, at first contourlet transform is studied
in brief, and then the fuzzy rules used for enhancement
is described. Finally, the methods are compared with each
other.

II. METHOD

A. The Contourlet Transform

The contourlet transform is a new geometrical image-
based transform, which is recently introduced by Do and
Vetterli [5]. In contourlet transform, the Laplacian pyramid
[6] is first used to capture the point discontinuities, then
it is followed by a directional filter bank to link point
discontinuities into linear structures. The overall result is
an image expansion using elementary images like contour
segments, called contourlet transform, which is implemented
by a pyramidal directional filter bank. The Laplacian pyramid
(LP) is used to decompose an image into a number of radial
subbands, and the directional filter banks (DFB) decomposes
each LP detail sub-band into a number of directional sub-
bands. The analysis part of this type of filter-bank is shown
in “Fig. 1”. Quincunx filter banks are the building blocks of
the DFB. We used the fan filters designed by Phoong, Kim,
Vaidyanathan, and Ansari [7] with support size of (23, 23)
and (45, 45) for the Quincunx filter banks in the DFB stage.

B. Contrast Enhancement Method

The complete algorithm for edge based contrast enhance-
ment is as follows:

1) Carry out the transform to get a complete representa-
tion of data in transform domain.

2) Shrink transform coefficients within the finer scales to
partially remove noise.

3) Emphasize features through an enhancement function.
4) Perform the inverse transform and reconstruct the

image.



Fig. 1. (left) Laplacian Pyramid is used for multi-scale decomposition and
DFB is used for directional decomposition of each detail sub-band, (right)
Respective frequency plane decomposition.

Linear enhancement functions tend only to emphasize strong
edges, which can lead to inefficient usage of the dynamic
range available on a display screen. Therefore, usually non-
linear functions are used for enhancement, in which lower
coefficient magnitudes are amplified with a higher gain
than larger magnitudes. In other words, low contrast area
is enhanced more than high contrast area. In addition, an
anti-symmetric and monotonic function must be used for
enhancement [2]. This knowledge of enhancement procedure
leads to following rules:

Rule 1. If the coefficient is small, then make it very small.
Rule 2. If the coefficient is normal, then make it large.
Rule 3. If the coefficient is large, then make it very large.

The first rule is used for denoising purpose. This is
the coefficient shrinkage based on for example Donoho’s
thresholding or shrinking procedures, namely Visushrink,
Riskshrink or Sureshrink. Rules 2, 3 are used for proper
enhancement or coefficient amplification due to available
dynamic range. Depending on desired denoising level and
enhancement gain, different weights can be assigned to each
rule. For example, if the noise power is low, then we can
ignore Rule 1. Besides, if a high enhancement gain is not
necessary, we can reduce the weight assigned to Rule 2.
Ordinarily, all weights are put to 1. Instead of changing
weights, we can make use of different suitable membership
functions, to properly enhance the desired features in the
image. But almost some special choices for membership
functions lead to successful contrast enhancement. A col-
lection of some of these membership functions used for
premises and conclusions are shown in “Fig. 2”. Membership
function types and their associated parameters are also given
in Table 1. In this table, Gauss, Gauss2 and Sigm functions
are defined as follows:

� Gauss or Gaussian function:

f �x�σ �c� � exp

�
�x� c�2

2σ2

�
(1)

� Gauss2 function is constructed from two Gauss mem-
bership functions as its right and left side curves.

� Sigm or Sigmoid function:

f �x�a�c� �
1

1� exp��a�x� c��
(2)

Fig. 2. Membership functions used for fuzzy enhancement model, (up)
MFs of premises, (down) MFs of conclusions.

The enhancement function obtained from these rules and
membership functions is shown in “Fig. 3”. In this function
it is assumed that the coefficients larger than t � �8 of the
maximum coefficient, are linearly amplified but they saturate
at the end. This saturation can be efficient in proper dynamic
range usage.

The other important advantage of the proposed method
is its ability and flexibility for denoising. When the noise
power is low, we can decrease the σ value related to the
premise part of Gauss membership function in Rule 1 and
vice versa. The value of this parameter can be proportional
to any threshold, obtained from a denoising algorithm.
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Fig. 3. The fuzzy enhancement function obtained from MFs of Fig. 2 and
Rules 1, 2, 3.



TABLE I

TYPES OF MEMBERSHIP FUNCTIONS AND THE VALUES OF THEIR

RELATED ENHANCEMENT PARAMETERS

Small Guass σ � �2, c� 0
Premise Normal Gauss2 σ1 � �17, c1 � �65,

σ2 � �09, c2 � �67
Large Gauss σ � �188, c� 1

Very Small Guass σ � �01, c� 0
Conclusion Large Sigm a� 15�4, c� �66

Very Large Sigm a� �06, c� 1

This function is continuous and monotonic but not anti-
symmetric. To make an odd enhancement function, we can
use function ”sign” after applying the enhancement to the
absolute values of the coefficients. Thus, if we denote the
nonlinear fuzzy-based function by g�x� and the maximum
absolute value of the coefficients of scale j by Mj then
enhancement function can be obtained as follows:

G j�k�x� � g��
x

Mj
�� � sign�x� �Mj�k (3)

In which k is index of the direction of transform atoms,
and x is the contourlet coefficient. When wavelet transform
is used for enhancement, there are only three directions,
namely HH, HL and LH. Therefore, separate enhancement
functions will be obtained for different scales and directions.
In contourlet transform the number of directions in each
scale is arbitrary. If l j level DFB is used in each scale of
contourlet transform, then the number of directions in that
scale will be 2l j , or 0 � k � 2l j � 1. In our experiments,
we implemented separate enhancement functions due to (2),
to different scales and directions of contourlet coefficients.
Note that the enhancement function is only applied to the
detail coefficients. Approximate coefficients are remained
unchanged.

III. EXPERIMENTAL RESULTS

The experimental results of such an implementation are
shown in “Fig. 4 and 5”. In “Fig. 4”, we have used the
specified enhancement function with the same parameters
for contrast enhancement of ”coins” image in both wavelet
and contourlet spaces. In “Fig. 5”, the same procedure
is applied to brain magnetic resonance image. We used
Symmlet 4 for wavelet based contrast enhancement, due to its
more denoising power. To implement contourlet transform,
we used Quincunx filter bank with PKVA filters [7] for
directional filter bank (DFB) and biorthogonal Daubechies
7-9 wavelet transform for Laplacian Pyramid (LP). For
contourlet transform, we used 5 LP levels and 64 directions
in the finest level.

Histogram equalization is a statistical method and can
not work well when there are high intensity distributions
in the image. When the frequency of lower greyscale val-
ues is much more than the frequency of higher greyscale
values, then HE will not act properly. This phenomenon is
clearly shown in MR image enhancement. Localizing the

Fig. 4. Contrast enhancement using different methods (from left to right and
top to bottom): coins image, histogram equalization, wavelet based fuzzy
contrast enhancement and contourlet based fuzzy enhancement.

histogram equalization may lead to better results. Wavelet
based methods are usually artefact free and because of
denoising capability of wavelet transform, are mostly used
for contrast enhancement in noisy environments. In compar-
ison between wavelet and contourlet based contrast enhance-
ments, two parameters must be considered: smoothness and
detail enhancement. Wavelet is better, when a smooth image
is desired after enhancement. Contourlet transform enhances
some structures much better, but with some artefacts in the
output image.

IV. CONCLUSIONS

In this paper we proposed a new method for image contrast
enhancement based on fuzzy logic. Three general fuzzy rules,
both for denoising and contrast enhancement, were sug-
gested. The proposed fuzzy approach is more understandable
and flexible. With a little change in each rule weight, it is
possible to get the desired enhancement function. Also the
threshold based denoising is simply done by changing the
standard deviation of the Gauss membership function used
for small coefficients. We applied the fuzzy model to both
wavelet and contourlet transforms, as respectively nondirec-
tional separable and directional non-separable transforms, to
enhance the image contrast. The results were also compared
with each other and with histogram equalization method. HE
is not a proper choice because of its highly global statistical
nature. Wavelet transform has powerful abilities to enhance
image contrast, as well as denoising. To better enhance the
line or curve shaped edges, contourlet transform is proposed.
This transform is better in enhancement but weaker in
denoising. Usually some artifacts are generated after contrast



Fig. 5. Contrast enhancement using different methods (from left to right
and top to bottom): brain MR image, histogram equalization, wavelet based
fuzzy contrast enhancement and contourlet based fuzzy enhancement.

enhancement by contourlet transform. In general, it is not
fair to compare these two transforms with one enhancement
function. This is because of different statistical natures of the
respective transform coefficients. For a perfect comparison,
an expert must judge for each image, each enhancement
functions and transforms, especially in biomedical field.
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