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Abstract 
 
Protein production has experienced great advances in 
recent years. In particular, high throughput protein 
production, coupled with the use of robotics, outputs 
thousands of mixtures in micro-array wells. To detect the 
presence of protein crystal formation, images of these 
wells are acquired regularly using robotic cameras. 
Traditionally, a crystallographer would manually process 
each image – identifying the wells that resulted in protein 
crystal formation. This manual inspection process is slow 
and given the high rate of mixture output, it has become 
near impossible for crystallographers keep up. Our aim is 
to create an automated method of detecting which wells 
have crystals and which ones do not. We make use of a 
neural network that is trained based on manually 
classified ground truth data. After it is trained, the 
automatic classifier would give a binary output – a value 
of one for the detection of crystals and precipitates in 
images and a value of zero otherwise. In our previous 
papesr, the core methods of using multi-scale Laplacian 
image representation to extract image features and the 
implementation of the neural network classifier were 
discussed. Here we present a new, optimized approach to 
training the neural network and results from a large-scale 
test. We claim that the neural network can be better 
trained if the training image dataset is optimized in the 
sense that ambiguous images are removed during the 
initial training processes. Incremental training is 
implemented so that the network can be improved as more 
data becomes available. From initial results with training 
based on a 6,000 optimized image dataset, the accuracy 
of the improved classifier approaches 95% in identifying 
a wide array of images.  
 
Introduction 
 
The topic of genomics has garnered great interest in 
recent years. Numerous consortiums have been 
established with the goal of identifying and reproducing 
protein structures. The consortiums bring together 
scientists from a wide range of backgrounds. The process 
begins with biochemists who dream up the different 
formulations. These concoctions are then seeded using 
robotics with different mixtures on a 1565 matrix well 
plate to create a huge variety of cocktails. The mixtures 
are incubated and at regular intervals, such as a day, a 

week or two weeks, they are checked for protein formation 
using a robotic camera which acquires the image of each 
well. In the past, when the production output of concoctions 
was slow, a trained crystallographer would manually inspect 
each image to see which wells have resulted in protein 
crystal. Aside from crystals, the crystallographer may 
typically observe mixtures with precipitates, organic 
material, skins, no reaction, or a combination of all of these. 
Typically, protein formation occurs in 1% of all mixtures. 
The mixtures with crystals are further examined and once the 
protein structure is identified, the formulation of these 
mixtures is recorded and they can be placed in the protein 
production pipeline.  
 
Given the recent advances and trend of moving towards high-
throughput protein production, the identification of which 
mixtures resulted in protein crystals has become the 
bottleneck. Manual inspection of each well simply cannot 
keep up with the output. At the NESG Consortium, there are 
more than 3 million images that are backlogged for 
processing and this number grows everyday. This delays the 
discovery of concoctions that lead to protein formation and 
hence lowers the potential protein production output.  
 
It is evident that an automated classification method is 
needed to address this problem. However, this problem is 
complicated by the fact that the protein structures may take 
many different shapes, precipitates and organic material not 
only clutter the image but also have similar shapes to protein 
crystals, the mixtures take the form of a droplet in the well 
which leads to irregular boundaries and non-uniform lighting 
conditions, and acquired images may be out of focus. 
Samples of these images are shown in Fig. 1. All this leads to 
difficulties in classification.  
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Figure 1:  Examples of well images. (a) & (b) both do not 
contain crystal or precipitates. (c) contains protein crystals 
 
The general approach we took to tackle this challenge is to 
use a neural network classifier. Previously expert labeled 
images are used as ground truth. Features from these images 



are extracted and pass in as inputs to the network. The 
classifier uses this previous knowledge to determine the 
likely presence of crystals in unknown images. The next 
section will provide an overview of the core methods and 
a detailed analysis for optimizing the training. The 
subsequent section will show the results of this effort. A 
detailed analysis of our core methods was presented in 
our previous papers [1,2]. 
 
Methods 
 
Droplet cropping 
 
The first step is to isolate the region of interest, which in 
this case is the droplet. The Ellipsoidal Hough transform 
is used to identify the possible elliptical boundaries in an 
image based on edge map information. The algorithm is 
modified as suggested by Malassiotis et al. in which 
gradient information is used instead of a computationally 
intensive three-dimensional search [3]. Figure 2a shows 
the result of performing this step.  
 
Laplacian Pyramid Filter & Feature Extraction 
 
The Laplacian filter is used to decompose the image into 
three different levels. Each level is obtained by 
subtracting a low-pass filtered image from the original 
image resulting in a pyramid structure shown in Figure 2. 
The Laplacian filter is used to extract the boundary 
information and image features. The multi-scale 
representation is capable of extracting the useful features 
of the image and at the same time, reduces the sample 
size. The image features are extracted from first and 
second order histograms of the Laplacian pyramid 
coefficients. The histograms contain useful information 
and clues as to the presence of protein crystals. Eight 
statistical features, which are invariant to orientation, are 
computed. These contain the mean, standard deviation, 
skewness, kurtosis, energy, entropy, autocorrelation, and 
power.  
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Figure 2:  (a) shows the result from droplet cropping. (b) 
shows the 3 level Laplacian pyramid expansion 
 
Neural Network Classification 
 
The feature vectors calculated in the previous step is 
passed into the input layer of a three-layer feed forward 
neural network shown in Figure 3. The LOG sigmoid 
transfer functions are used for both hidden and output 
layers to generate an output that is between zero and one. 

Backprojection and mean square error optimization were 
used to train the network. The output of this network is 
binary. An output of “1” would indicate the presence of 
crystals or precipitates as defined by the crystallographer 
who contributed the manually labeled image dataset used as 
the ground truth. An output of “0” would indicate that 
crystals or precipitates were not present but the image may 
contain organic matter, skins from a dried well, or a clear 
well. The actual value that the neural network outputs 
however is in between these two extremes. A threshold is 
needed to separate the two classes and this is discussed in 
optimization.  
 

 
Figure 3:  Three layer feed forward neural network 
 
Training Database Optimization 
 
The classifier is trained both using an optimized and random 
database of negative images. The optimized images are 
selected to minimize characteristics that tend to lead to 
ambiguous outputs, those which output from .4 to .6.  To 
optimize the database, a sample dataset of roughly 200 
images is run using a modified trained classifier.  The 
modifications include capabilities to categorize problematic 
images.  Images which outputted in the range of .4 and .6 are 
categorized under ambiguous and the falsely identified 
images are marked as either false positive or false negative. 
The images in the ambiguous category are manually scanned 
to determine possible universal characteristics or trends that 
led to their false classification or ambiguity.    These 
characteristics can be broken into three broad categories:  
images with non-crystalline precipitates (Figure 4a), images 
with heavy ripples (Figure 4b), and images with significant 
air pockets (Figure 4c).  
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Figure 4:  Categories of ambiguous images. (a) non-
crystalline precipitates (b) heavy ripples (c) air pockets 
 
The three image types are manually removed from a larger 
bank to produce sets of 1000, 2000, and 4000 “clean” 
images.  The process to clean the dataset included viewing 
each image of the large dataset individually, and removing 
the image if it fell into the three categories.  The reasoning 
behind the optimization is incremental learning.  The 
classifier is initially trained with well-defined positive and 



negative images.  Eventually, each training set fed to the 
classifier will contain an increased level of ambiguity.   
 
Incremental Training 
 
Given the large size and potential additions to the training 
database, it did not make sense to train the entire database 
at once. Instead a linear piecewise approach was taken 
and illustrated in Figure 5. 
 

 
Figure 5:  Flow diagram of the training protocol. 
Calculated weights from a block of the image dataset are 
cascaded into the training of the subsequent image block  
 
From Figure 5, a block from the overall dataset is 
selected, used to train the neural network and the weights 
from the neural net classifier are saved. A second block of 
images is selected and this time, the weights from the 
previously trained neural net is passed as an input an 
additional input. The neural network uses the previous 
weights r to train with the new block of images leading to 
new weights for neural classifier which incorporates data 
from the previous two image blocks. This process is 
repeated until the training of the entire image database is 
complete.  
 
An added benefit of this scheme is that as additional 
images are acquired, the weights of these images can be 
added to an existing network. This enables the neural net 
classifier to be updated without having to retrain the 
massive database.  
 
Threshold Optimization 
 
Given the rare occurrence of protein crystal formation 
(1% of all mixtures), it is crucial that an automatic 
classification method does not miss any hits. In other 
words, the false negative percentage needs to be kept as 
low as possible. Using some initial data, it was observed 
that a number of images with proteins did not surpass the 
default detection threshold of 0.5 and were labeled as a no 
protein/precipitate image. Figure 6 shows the classifier 
output for each image ranging from 0 for no crystals to 1 
for crystal hits.  
 
The solid dots are ideal or ground truth data and the 
circles are the classifier outputs. Ideally, the circles and 
dot should match. The red line represents the default 
threshold – everything above the line would be labeled as 

a crystal hit and everything below as a miss. It is evident that 
a number of images with crystals had a neural net classifier 
output that was below the red threshold line and falsely 
labeled as a miss. This problem was remedied by 
incorporating the blue dashed line which represents the new 
threshold line. This was experimentally determined and set at 
0.03. Although the false positive percentages increase 
slightly, the more crucial statistic of false negatives fall 
drastically.  
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Figure 6:  Neural net classifier output. Red line is the 
original threshold, blue is the optimized threshold detection 
 
 
Results 
 
In order to test the benefits of cleaning the training dataset, 
the classifier was trained using both uncleaned and cleaned 
datasets. The number of images in the database was also 
varied to find the effects of database size on the training of 
the classifier. These classifiers were tested by running a set of 
manually labeled, previously unseen images. The false 
positive percentage was obtained by finding the number of 
images without proteins or precipitates that were labeled as 
ones with it and vice versa for false negative. The total error 
was found by adding the false positives and negatives 
together. The ratio between images with proteins and 
precipitates and those without is roughly in a 1 to 10 ratio. 
While this ratio is greater than the actual percentages, it was 
found that this ratio yielded the best false negative rate. 
Using a smaller ratio tends to bias the classifier into 
generating more false negatives. Given the rare nature protein 
crystals, false negatives need to be kept at a minimum. The 
results are shown in Table 1.  
 
Uncleaned Images 
Size FP FN Error 
1,000 2.88 5.04 7.92 
2,000 1.44 5.22 6.66 
4,000 1.26 4.68 5.94 
6,000 0.72 4.86 5.58 
 
Cleaned Images 
Size FP FN Error 
1,000 3.96 3.43 7.39 
2,000 4.68 3.24 7.92 
4,000 5.40 3.42 8.82 
6,000 3.12 1.40 4.52 



Table 1:  Results from testing  
From the results shown in Table 1, it is clear that 
classifiers trained with the cleaned image database 
yielded better results than those trained with the presence 
of ambiguous images. Furthermore, removing the 
ambiguity plays a larger role in small training datasets 
than compared to large datasets. With a database of over 
4,000 images, the role of database optimization seems to 
have a much lesser effect presumably because the weight 
of a few ambiguous images is overshadowed by other 
more distinct images.  
 
A second observation is that as the size of the training 
database expands, the classification results improve. The 
more images that the neural network is exposed to, the 
better is its abilities to classify unknown images. One way 
to improve accuracy is to add more manually classified 
images into the training. The largest training size that was 
used is 6,000 because there were not enough images with 
proteins to maintain the 1 in 10 ratio.  
 
Discussion 
 
The results from this classifier are very promising. While 
it may not attain the same accuracy as from manual 
inspection, the main advantage lies in that it can classify, 
with respectable results, completely automatically. While 
a trained crystallographer may be able to inspect 8,000 
images a day, our automatic classifier can process 20,000 
images a day without tiring. This number is scalable and 
dependent solely on computational power. It will 
continuously process images as long as the program and 
machines are running. While the ultimate goal is to 
replace the crystallographer and manual inspection all 
together, a semi-automatic method is still tremendously 
useful. Instead of processing 1565 images per well, the 
crystallographer can inspect only a handful that the 
automatic classifier had problems with and deemed as 
ambiguous.  
 
Future work in this area aims to expand the training 
database to further enhance the reliability of the classifier. 
Since the current classifier only gives a binary output, 
another enhancement would be to increase the number of 
classification outcomes to include the ability to 
distinguish precipitates from crystals as well as organic 
matter and dried skins.   
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