
Decoding High Level Signals for Asynchronous Brain Machine
Interfaces

Byron Olson, Jennie Si, and Jason Silver

Abstract— While many brain machine interface (BMI) sys-
tems have been presented in the literature, most of these systems
present the user with an ’always on’ interface with no way to
shut the interface down when not needed. This paper proposes
two extensions of previous BMI work to create an asynchronous
BMI in which the system only produces outputs when needed.
The first classifies incoming signals into not only task related
states, but also an idle state. A refinement of this system utilizes
a Markov Model (MM) of the task to impose order on the
sequence of states produced by the system. This MM filter
improves the accuracy of the system an average of 16%.

I. INTRODUCTION

The past decade has seen an explosion in the number
and complexity of brain machine interfaces (BMIs) [1]–
[4]. These systems, which utilize signals from the brain
to directly control some external device have matured to
the point where their clinical application seems far more
likely. Most of these systems, however, are limited to a
highly confined workspace and further have no off state.
Realistic systems will not only need to produce task related
signals, but also decide to turn those signals off and on.
Asynchronous systems only provide task related signals
when needed and providing no output otherwise.

A. Previous Work

In previous work [5], our group, motivated by creating
devices that could provide patients with tangible increases in
quality of life, has focused on the possibility of controlling a
vehicle with asynchronous, as-needed, high level commands
as opposed to second-to-second updating of a three dimen-
sional trajectory. Using signals from motor cortical areas to
decode these high level commands, five rats were able to
successfully complete a paddle pressing task using only a
small number of neurons.

Specifically, rats used a BMI (Fig. 1) to indicate a desired
direction to a task. The BMI looked for the start of a task
and then, at a specific time in the future, collected data to
create a neural activity vector (NAV). This single NAV per
trial was fed into a support vector machine (SVM) and a
decision about direction was made. This interface worked
well. The problem, however, was that the system needed to

Data used in this work was obtained via support from DARPA Bio-
Info-Micro Grant # MDA972-00-1-0027 and NSF ECS-0233529. The first
author completed this work during post-doc at the Center for Computational
Intelligence, Learning, and Discovery under a grant from the Iowa State
Foundation.

B. Olson (Post-Doc), J. Si (Professor), and J. Silver (Graduate Stu-
dent) are all with the Department of Electrical Engineering, Arizona
State University, Tempe, AZ 85287, USA{Byron.Olson, si,
Jason.Silver }@asu.edu

Fig. 1. Original System Diagram

know when a trial had begun. The methods outlined in this
paper eliminates the need for any non-neural signals, and yet
performs as well or better than the previous system.

II. M ETHODS

A. Experimental Setup

The data used in paper was recorded during experiment
discussed in [5]. For completeness, the methods used will be
summarized here.

Animals (male Sprague-Dawley rats) were implanted with
a single 2×4 array of 50µm microwire electrodes spaced
500µm apart in their right hemisphere motor cortical area1.
Signals from the arrays were amplified, discriminated, and
recorded using an NMAP system (Plexon, Inc, TX).

Fig. 2. A Rat’s View of the Conditioning Chamber

1The Institutional Animal Care and Use Committee at Arizona State
University approved the experimental protocol for this investigation.

The rats performed a five-light task. For this a rat was
placed in an operant conditioning chamber facing a panel
(Fig. 2) with a retractable paddle to his left and right and
a non-retractable ready paddle in the center. The retractable
paddles controlled a series of red LEDs placed horizontally
across the panel, two on the left, two on the right, and one
in the center. The task would proceed as follows:

• Rat pressed the ready paddle to start a trial.
• A non-center LED would illuminate.
• After two seconds, the retractable paddles were ex-

tended.
• Presses on the left/right paddle would ’move’ the light

to the right/left.
• If the center light was illuminated for more than 1s, a

food reward was dispensed.

In the original study, only the ’inside left’ and ’inside
right’ LEDs were used as initial cues. Thus, correct responses
would move the light to the center and incorrect responses
would move the light away from the center to an ’outside’
LED. Each day rats would participate in around 100 trials of
such manual interaction while neural signals were recorded.
From this data, a classifier was constructed. Trials remaining
in the 45 minute experimental session were controlled by the
classifier instead of the paddles.

This paper utilizes the same neural and behavioral data
as the original system in a simulated on-line fashion. Please
note, while some significant adaptation was detected during
the original experiments, we will not take that into account in
our reexamination. This paper examines open-loop systems
created from data derived in a closed-loop experiment, so
no adaptation is possible to the new methods. We would
expect some increase in performance if such systems were
implemented in a closed-loop fashion. Nevertheless, data
examination here will take place as a simulation of the
original conditions. Data from the calibration phase (first 99-
100 trials) will be used to train all methods (see Fig. 3) and
data from the brain controlled phase will be input into the
systems to test these methods (see Fig. 4) These are natural
testing and training datasets with differences in distributional
parameters likely to resemble what will be encountered in
real closed-loop experiments.

B. Neural Activity Vectors

Neural Activity Vectors (NAVs) encode the information
observed in the neurons under consideration and serve as
inputs to machine learning techniques. Typically NAVs con-
sist of firing rates (frequencies) estimated by counting spikes
(action potentials) observed in a window of time. Multiple
time windows from multiple neurons are then concatenated
into a single vector. The original study attempted to incorpo-
rate temporal information by using 10 bins per neuron, with
each bin representing 100ms. Since temporal information in
this study is incorporated in other ways, only a single one
second bin (updated every 250ms) per neuron is considered.
This allows the classification methods to simply use the most
current version (or estimate) of the firing rates.

Fig. 3. Graphical Representation of Data used to calibrate BMI systems

Fig. 4. Graphical Representation of Data used to test BMI systems

C. Support Vector Machines

Support Vector Machines (SVMs) are a class of tool uti-
lized in machine learning problems [6]. Traditionally, support
vector machines are used to learn a mapping from some
input space to a set of classes. This mapping is computed in
some high dimensional space by constructing a hyperplane to
separate the classes. Since many such separating hyperplanes
may exist, the hyperplane with the maximal margin is
selected.

SVMs are formulated as binary classification problems
where the training data consists of N pairs{(Xt, yt)}N

t=1

with input Xt ∈ <p and binary class labelsyt ∈ {−1, 1}.
The classifier takes the form

y(X) = sign(WT φ(X) + b),

whereφ maps the input space<p to a high-dimensional fea-
ture space<m (possibly infinite), andW is a weight vector
for these high-dimensional vectors. The optimal (maximum
margin) separating hyperplane is equivalent to the minimum
‖W‖ and thus leads to the following optimization problem:

min
W,ξ1,...,ξN

{
1
2
WT W + C

N∑
t=1

ξt

}
,

subject to
yt(WT φ(Xt) + b) ≥ 1− ξt

ξt ≥ 0, t = 1, . . . , N.

Since the data, even in the higher dimensional space, may
not be separable we introduce the slack variables,ξt’s which

reflect the level of misclassifications for these non-separable
samples. C is used as a tuning parameter that expresses
the relative cost of these misclassifications compared to
maximizing the margin.

By constructing the Lagrangian,the dual optimization
problem emerges as:

max
α1,...,αN

{
N∑

t=1

αt −
1
2

N∑
t=1

N∑
s=1

αtαsytysK(Xt, Xs)

}
,

subject to

0 ≤ αt ≤ C
N∑

t=1

αtyt = 0,

Where K(Xa, Xb) = φ(Xa)T φ(Xb) is a kernel function.
Various types of kernel functions have been used, but to
guarantee a solution they must satisfy the Mercer condition
[6]. This study uses Gaussian kernels of the form:

K(Xa, Xb) = e−γ‖Xa−Xb‖2

Expressed using kernels the decision function takes the
form:

f(X) =
N∑

t=1

αtytK(X, Xt) + b.

And thus the classifier becomes:

y(X) = sign(f(X)),

The observations which appear in the decision function, i.e.,
the data points with non-zero coefficientsαt, are called
support vectors. Therefore, the complexity of the constructed
learning machine depends on the number of support vectors
rather than the dimension of the feature space.

All support vector machines in this study were written in
MATLAB and based on [7]. The C andγ parameters were
optimized using 10-fold cross validation over the training
data.

D. Probability Models for SVM

Support Vector Machines are discriminative classifiers
that do not attempt to generate a model of an underlying
probability distribution, but rather simply attempt to discern
examples of the classes from one another. The problem,
however, is that a probability is needed to make comparisons
and integrate prior knowledge from a variety of sources
expressed as probabilities. For example, in a realistic driving
scenario, vehicle sensors could express the probability of
changes in direction.

Two methods of developing a probability model from
SVM decision function valuesf(X) were considered, with
essentially identical results. The first method (similar to [8])
fits a sigmoidal function with parametersa andb such that:

Pplatt(class = 1|f(X) = D) =
1

1 + eaD+b

The second method empirically determines this probability
by simply resampling the training vectors to createN ex-
amples from the positive class under the assumption that the
dimensions of the input are independent. The decision values
f(X̂k) with k = 1 . . . N are then computed. The probability
of a decision value given the positive classPemp(class =
1|f(X) = D), is simply the fraction ofX̂k with decision
values less than or equal toD.

E. Markov Chain Model

The important states identified for the system
Idle,Start ,Left ,Right , do not occur in a random order. In
fact, we expect aStart state to follow anIdle. Likewise,
we expectLeft or Right to follow a Start . Assuming the
state sequence is from a Markov system implies:

P (St+1|St, St−1, . . . , S0) = P (St+1|St)

Thus, the next state in a sequence is only dependant on the
previous state. We can thus create a state transition matrix
A where Aij = P (S(t) = j|S(t − 1) = i), which will
fully describe the state dynamics of the system. The state
transition matrix for the task under consideration is shown
graphically in Fig 5. Here arrows pointing from one state to
another represent a valid state transition.

Fig. 5. Graphical representation of Markov model of the BMI system.
Nodes Idle, Start, Left, & Right show the states of the system. Edges
between nodes indicate valid state transitions.

III. A SYNCHRONOUSIMPLEMENTATIONS

Two principled approaches to creating an asynchronous
BMI were developed. Both of these approaches take neural
signals continuously and provide a paddle pressing signal
to the task. Likewise, both approaches consider the task as
having four distinct states,Idle indicating the time between
trials, Start indicating the start of trial, andLeft andRight
indicating pressing of the left and right paddles.

The first approach simply attempts to classify every NAV
as one of the four classes using an SVM. To do this a
1 − vs − all approach is used. This approach creates a
single classifier per class in which examples of a given class
are pitted against all other examples. The results from the
classifiers are compared and the classifier with the highest
probability is assigned as the output.

The second approach takes advantage of the orderly
succession of states observed in a real task to “filter” the
outputs from the support vector machines. By assuming an

initial state of the systemS0, the subsequent states can be
determined using the both the output of the SVMs and and
state transition matrix. Explicitly we attempt to maximum
P (S(t) = k|f(Xt), S(t − 1)) at time t, over all possible
S(t). Under a minimum set of assumptions this is equivalent
to maximizing

P (S(t) = k|f(Xt))× P (S(t) = k|S(t− 1) = i)

where
P (S(t) = k|S(t− 1) = i) = Aik

is from the state transition matrix. While sophisticated meth-
ods exist to optimize the state transition matrix. Here, a
simple grid search was performed over valid state transition
matrices, utilizing the training data.

IV. RESULTS

A. Accuracy

TABLE I

ACCURACY

4-class SVM 4-class SVM
Rat Day with MM

ratA 1 75% 90%

ratA 2 86% 92%

ratA 3 73% 85%

ratB 1 35% 73%

ratC 1 71% 81%

Table I presents accuracy computed as the percentage of
trials completed correctly using the the 4-class SVM alone
versus the 4-class SVM with MAP, Markov Model filter.
Trials are considered correct if predicted paddle press times
lead to a correct sequence of paddle presses. For this, paddle
press predictions outside of the trial period and need for start
presses are ignored.

B. Effect of Probability Models

The two methods used to convert SVM decision function
values into probabilities, do indeed create slightly differ-
ent probability models. However, except for a difference
in the optimal state transition matrices (shown below),
there was no difference in the task completion accuracy.

Aemp =

0.25 0.25 0.25 0.25
0 0.1 0.45 0.45

0.8 0 0.1 0.1
0.8 0 0.1 0.1

Aplatt =

0.25 0.25 0.25 0.25
0 0.2 0.4 0.4

0.5 0 0.4 0.1
0.5 0 0.1 0.4

Here rows/columns are assigned as

Idle,Start ,Left ,Right .

V. DISCUSSION

The EEG based brain-computer interface (BCI) world
has considered asynchronous formulations [9], [10]. Further,
finite state machine based systems have also been tried. In
[11] for example, a mobile robot was controlled using a
Gaussian classifier coupled to a state model. Users would
self-select three EEG signals that would indicate a driving
direction to the robot, the state model would then interpret
the EEG control as well as sensor indications to determine
the direction of the robot.

In the BMI world, similar ideas are implemented in
Kalman filters. Where observations are combined with state
models to provide improved performance. These systems,
however, are only concerned with active movement and not
with transitioning to and from an idle state.

VI. CONCLUSIONS

Here two asynchronous BMI systems are described. The
first classifies every NAV as one of four possible states.
This allows the system to utilize non-task outputs to put
the system into an idle state. The second system refines
the approach using a Markov Model (MM) based filter to
impose order on the sequence of states. This filter improves
the accuracy of the system an average of 16% (min 6%
max 38%). This result hold for two separate methods of
converting SVM decision function values into probabilities.
Such a formulation provides an interesting framework in
which to consider the next generation of BMIs.

REFERENCES

[1] J. K. Chapin, K. A. Moxon, R. S. Markowitz, and M. A. Nicolelis,
“Real-time control of a robot arm using simultaneously recorded
neurons in the motor cortex,”Nature Neuroscience, vol. 2, pp. 664–
670, 1999.

[2] D. Serruya, N. G. Hatsopoulos, L. Paninski, M. R. Fellows, and J. P.
Donoghue, “Instant neural control of a movement signal,”Nature, vol.
416, pp. 141–142, 2002.

[3] D. M. Taylor, S. I. Tillery, and A. B. Schwartz, “Direct cortical control
of 3d neuroprosthetic devices,”Science, vol. 296, pp. 1829–1832,
2002.

[4] S. Musallam, B. D. Corneil, B. Greger, H. Scherberger, and R. A.
Andersen, “Cognitive control signals for neural prosthetics,”Science,
vol. 305, no. 5681, pp. 258–262, 2004.

[5] B. P. Olson, J. Si, J. Hu, , and J. He, “Closed-loop cortical control
of direction using support vector machines,”IEEE Transactions on
Neural Systems and Rehabilitation Engineering, vol. 13, no. 1, pp.
11–18, 2005.

[6] B. Scḧolkopf and A. Smola,Learning with Kernels. Cambridge, MA:
MIT Press, 2002.

[7] S. Canu, Y. Grandvalet, and A. Rakotomamonjy, “Svm and kernel
methods matlab toolbox,” Perception Systmes et Information, INSA
de Rouen, Rouen, France, 2003.

[8] J. C. Platt,Probabilities for SV Machines. Cambridge, MA: MIT
Press, 2000, pp. 61–73.

[9] G. Townsend, B. Graimann, and G. Pfurtscheller, “Continuous eeg
classification during motor imagery–simulation of an asynchronous
bci.” IEEE Transactions on Neural Systems and Rehabilitation Engi-
neering, vol. 12, no. 2, pp. 258–265, 2004.

[10] J. Millan and J. Mourino, “Asynchronous bci and local neural classi-
fiers: an overview of the adaptive brain interface project.”IEEE Trans-
actions on Neural Systems and Rehabilitation Engineering, vol. 11,
no. 2, pp. 159–161, 2003.

[11] J. Millan, F. Renkens, J. Mourino, and W. Gerstner, “Noninvasive
brain-actuated control of a mobile robot by human eeg,”IEEE Trans-
actions on Biomedical Engineering, vol. 51, no. 6, pp. 1026 – 1033,
2004.

