
 
 

  

Abstract—To date, the application of physiologically based 
pharmacokinetic (PBPK) models in support of drug discovery 
remains limited, in part due to information deficit and 
uncertainty regarding model parameters. Fuzzy set theory 
provides a suitable way to objectively account for parameter 
uncertainty in models. Here, we present a fuzzy set-based 
PBPK modeling framework and demonstrate its utility in 
predicting diazepam pharmacokinetics in human plasma, 
following intravenous dosing, from available animal in vivo and 
literature data. For computationally expensive PBPK models, 
the sparse grid method is proposed as an efficient alternative to 
commonly used fuzzy arithmetic algorithms for function 
simulation. 

I. INTRODUCTION 
HE physiologically based pharmacokinetic (PBPK) 
model is a powerful tool for predicting quantitatively 

drug disposition in different animal species, including 
humans [1]. Despite its inherent advantages for cross-species 
extrapolation, the application of PBPK modeling in support 
of drug development in the pharmaceutical industry has, thus 
far, remained rather limited. One of the main reasons for this 
limited applicability is the deficiency or imprecision of 
experimental data from which to estimate and extrapolate 
parameters for human PBPK models. Particularly, during 
early-stage drug development, information stemming from 
‘exploratory’ animal in vivo and in vitro studies for each 
novel drug compound is likely to be limited, incomplete, 
vague or quasi-quantitative [2]. A suitable way to represent, 
aggregate and propagate the effects of data paucity and 
uncertainty in mathematical models is with a possibilistic 
approach, e.g. fuzzy arithmetic [3]–[4].  
 

     The primary aim of our study is to build upon a previous 
PBPK modeling strategy for incorporating measures of 
variability and uncertainty [5] into the prediction of human 
pharmacokinetics during preclinical and early drug design. 
Forming the core of our approach is a fuzzy set-based 
simulation technique that identifies worst-case scenarios 
without assigning a level of probability to the set of possible 
pharmacokinetic outcomes. To this end, we propose the use 
of sparse grid interpolation [6]–[7], over commonly used 
algorithms [8], as an efficient tool to perform fuzzy 
simulation, especially for computationally expensive 
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multivariate functions, e.g. PBPK model of drug disposition. 
The early application of PBPK modeling in humans can 
potentially serve as a powerful and cost-effective tool during 
the clinical candidate selection process.  

II. MATERIALS AND METHODS 

A. Fuzzy sets and numbers 
Under the fuzzy set theory [9], a membership level 
( ) [ ]1,0∈~ xµS  is assigned to all elements x of a set S~ , i.e., 

the elements belong to S~  to a certain degree. The core of the 
set is defined as the subset for which 1=~Sµ . The support of 

S~  contains elements for which 0>~Sµ . The α-cut or α-

sublevel, representing intervals of confidence, is a 
generalized support: the subset for which αµ ≥S~

. A fuzzy 

number is a fuzzy set with some specific attributes: the set is 
convex and normal, the membership function is piecewise 
continuous, and the core consists of at least a single element. 
The membership function of a fuzzy number can be of 
arbitrary shape, either derived from experimental data or 
“expert” knowledge of the data values. Using available 
tools, this information can then be coded into a possibility 
distribution, which may be represented by a fuzzy number 
[10]–[11]. 

B. Fuzzy arithmetic with sparse grids 
The principle behind simulating a continuous fuzzy 

function using sparse grids is to construct a sparse grid 
interpolant Aq,d(f) of the original function f with sufficient 
accuracy at the lowest α-sublevel. This means that a full set 
of deterministic computations, combining the pertinent 
interval extrema and values in-between, is only performed at 
the lowest membership level of the fuzzy parameters. The 
hierarchical structure of the sparse grid interpolation scheme 
enables adjustments of the interpolation depth so that a 
desired relative or absolute accuracy can be achieved. The 
interpolant then replaces the original function f in estimating 
values of the fuzzy output variables at the higher 
membership levels. Briefly, the sparse grid algorithm is 
composed of four main parts: 

 

1) Discretize the range of membership of each fuzzy 
parameter ip~ , i = 1,…,d, into m equally spaced 
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intervals. This leads to the decomposed 
representations: 
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2) Referring 0
iI  as the support of the ith fuzzy 

parameter ip~ , define the Cartesian product of the 
supports of all fuzzy parameters as the support box Ω: 
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3) Compute the sparse grid interpolant Aq,d(f) with 
sufficient accuracy for the support box of the fuzzy 
parameters. Details on the construction of Aq,d(f) can be 
found in [6]–[7]. 

 

4) The fuzzy-valued output variable rq~ , r = 1,…,w, at 
membership level j is obtained in its decomposed form: 
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by solving: 
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 where j
d

j II ××1  are d-dimensional boxes formed by 

the Cartesian product of the intervals j
iI  of all fuzzy 

parameters ip~ , i = 1,2,…,d, j = 1,…,m. 
 

The accuracy of the fuzzy result depends primarily on the 
accuracy of the interpolant, which can be monitored during 
its hierarchical construction. It has been shown that the 
asymptotic quadratic error decay of full grid interpolation 
with increasing grid resolution is preserved up to a 
logarithmic factor [6]–[7]. 

C. Fuzzy arithmetic with the vertex method 
In this study, we compared the performance of the sparse 

grid method at simulating the fuzzy output of the PBPK 
model of diazepam disposition in humans with a commonly 
used fuzzy arithmetic algorithm, the vertex method [8]. The 
vertex method performs a full-factorial Design of 
Experiments on the interval extrema of the fuzzy problem. 
More concretely, each of the d parameters ip~ , i = 1,…,d, is 
either assigned its minimum or it maximum value, and all 
possible combinations of individual parameter maxima or 
minima are listed per α-cut. Each of the 2d parameter 
combinations is then successively analyzed in a regular 
deterministic analysis run, and the membership function of 
the fuzzy output is reconstructed based on the deterministic 

results from all α-sublevels. 

D. PBPK modeling 
The PBPK model for diazepam disposition in humans was 

based upon that published by Gueorguieva and colleagues 
[5], as shown in Fig. 1. The model was composed of 12 
physical tissue compartments: liver (LI), kidney (KI), brain 
(BR), intestine (SPL), stomach (ST), muscle from the hind 
limb (MU), adipose (AD), skin after removal of hair (SK), 
testes (TE), heart (HT), lungs (LU) and rest of the body 
(RE)) and two blood compartments (mixed venous (VEN) 
and arterial (ART)).  

 

Well-stirred and blood flow-limited conditions were 
assumed in all compartments. Additionally, it was assumed 
that diazepam distributes instantaneously and 
homogeneously within each compartment, and the liver was 
considered as the main site of elimination. The 
compartmental mass balance equations for each 
compartment are described in [5].  

 

The physiological parameters, blood flow rates and tissue 
volumes used in the model were obtained from [12]. For 
intravenous administration, values on the tissue-plasma 
partition ratios Kp for drug distribution and on the hepatic 
intrinsic clearance CLint for drug elimination are also 
required. The procedure of generating fuzzy-valued Kp’s is 
detailed in [5]. In brief, the probability density functions of 
Kp’s were first estimated in a closed loop system by fitting 
the set of differential equations describing the PBPK model 
in Fig. 1 to experimental data obtained from a study of 
intravenous dosing of diazepam in 24 male Sprague-Dawley 

 
 
Fig. 1.  PBPK framework used for prediction of the disposition profile 
of diazepam in humans. CLint denotes the hepatic intrinsic clearance. 
5 mg of diazepam was administered intravenously over 1 min 
(adapted from [5]). 



 
 

rats [5]. The Kp’s were next transformed into fuzzy numbers 
using the optimal membership function criterion [10]. To 
scale the rat s'~

pK  to humans, we divided the former by the 

fraction of unbound diazepam fu in rat plasma, based on the 
assumption that the tissue-plasma unbound concentration 
ratio and distribution volume for unbound diazepam are the 
same in rats and humans [13]–[14]. Furthermore, to capture 
the imprecision inherent in the scaling of rat in vivo s'~

pK  to 

the human situation, rat fu was modeled as a triangular fuzzy 
number with spread 0.1×fu, i.e., 

uuuuuu ffffff ×+×−= 1.0,1.0,~  according to the triplet 

notation of Hanss [4]. Deterministic or crisp-valued CLint, 
blood-plasma concentration ratio R and fraction unbound in 
plasma fu of diazepam for man were obtained from the 
report by Klotz et al [15]. The interval extrema at α = 0, 0.5 
and 1 of s'~

pK  implemented in the human PBPK model for 

this study are listed in Table I. 
 

To objectively evaluate the performance of the fuzzy 
PBPK modeling approach, an independent set of human in 
vivo test data was obtained from the literature [16]. This 

consisted of 7 instances of plasma concentration-time data 
(where an instance corresponds to a single plasma 
concentration-time profile sampled at 5, 8, 11, 15, 20, 30, 45 
and 60 min) for diazepam dosed intravenously in human 
subjects (weight, 84±17 kg). The diazepam dose was 5 mg, 
intravenously administered over 1 min. The simultaneous 
differential equations were solved by the Runge-Kutta 
method in MATLAB 7.0 (MATLAB manual, 2004; The 
MathWorks Inc., Natick, MA). 

III. RESULTS AND DISCUSSION 
The fuzzy-valued diazepam concentration C in the various 

human tissues at any given time t (t = 0–60, in intervals of 1 
min) was composed from the α-sublevel sets jC , j = 1,…,m. 
In particular, the output envelopes for a specific interval of 
confidence α were obtained by profiling the minimum and 
maximum concentration values over t = 0–60 min. Fig. 2 

depicts the PBPK simulations of the concentrations of 
diazepam in the mixed venous, liver, heart, brain, adipose 
tissue and lungs of a 70 kg human. Although the sparse grid 
and vertex methods yielded identical solutions, the CPU run 
time for the sparse grid method was significantly lower (1.7 
hr versus 10.2 hr). Thus, for computationally expensive 
multivariate functions, we inferred that the sparse grid 
method was the superior approach in terms of solution 
accuracy per CPU run time. Further, the vertex method is 
known to provide inaccurate solutions when the model is 
non-monotonic in the parameters [17]. Since the sparse grid 
method can simulate functions using combinations of 
parameter values in-between interval extrema, the effect of 
model non-monotonicity on the sparse grid and the vertex 

methods’ solutions will be investigated in the future. 
 

The closeness of fit between the simulated plasma 
concentration-time envelopes and the corresponding mean in 
vivo data [16] indicates that the plasma pharmacokinetics in 
humans was relatively well simulated for the intravenous 
administration. We noted that the mean experimental values 
largely fell within the diazepam concentration envelopes 
corresponding to the fuzzy predictions of mid-to-high 

 
 
Fig. 2.  Fuzzy-valued diazepam concentration (ng/ml) versus time (min) in 
the mixed venous blood pool, liver, heart, brain, adipose tissue and lungs, as 
predicted by the sparse grid and vertex methods. As denoted by the legend at 
the bottom right, a darker color represents a higher level of membership (or 
more certain prediction) of the fuzzy concentration. The mean (±s.d.) 
experimental concentration-time values (from [16]) for the mixed venous 
compartment are also shown for comparison. 

TABLE I 
FUZZY-VALUED HUMAN PBPK MODEL PARAMETERS 

Parameter Interval at α = 0 Interval at α = 0.5 Interval at α = 1 

LU Kp
a [16.7, 57.9] [26.9, 44.4] [30.4, 40] 

LI Kp [28.1, 89.9] [44.8, 68.2] [51.8, 60.1] 
ST Kp [19.7, 59.3] [29.3, 46.5] [32.8, 42.2] 
SPL Kp [14, 41.7] [20.2, 33.3] [22.4, 30.4] 
KI Kp [19, 58.5] [28.6, 45.8] [32.1, 41.5] 
MU Kp [6.8, 21.5]  [9.8, 17.4] [10.8, 16.1] 
AD Kp [48.1, 278.3] [93.1, 216.3] [105.4, 197.9] 
SK Kp [10.8, 39.6] [17.4, 30.8] [19.6, 28] 
HT Kp [21.3, 62.4] [31.4, 49.1] [35, 44.6] 
BR Kp [6.1, 19.4] [8.8, 15.7] [9.6, 14.5] 
TE Kp [18.9, 60.1] [29, 46.7] [32.6, 42.2] 
RE Kp [20.7, 262.8] [90.1, 173.3] [120.1, 139.2] 

a Kp = tissue-plasma partition ratio. 
 



 
 

certainty (α = 0.5–1). As illustrated in Fig. 2, our simulation 
efforts were also extrapolated to other tissues for which 
experimental concentration-time data were not available, e.g. 
heart. The results showed that the diazepam concentrations 
in most compartments attained their respective peak values 
within 10 min after administration, before decreasing 
steadily thereafter (the marginal numerical instability for the 
predicted concentrations at larger time instances and lower 
α-sublevels in the lungs was due to the large uncertainties in 

s'~
pK ). Although the aforementioned concentration-time 

profiles were not validated, previous accurate estimations of 
rat tissues’ in vivo diazepam concentration-time data via the 
same fuzzy set-based PBPK model [5], coupled with the 
common utilization of the rat as a surrogate species for the 
pharmacokinetic characterization of drug candidates in 
humans [18] suggest that our present predictions of 
diazepam disposition in various compartments over time 
ought to be adequately reliable.  

 

A significant advantage of the fuzzy PBPK model is that 
it can be implemented to mechanistically inform drug 
selection during early drug discovery, when information 
stemming from limited ‘preliminary’ experiments on novel 
drug candidates is predominantly insufficient or vague. In 
this regard, the representation, aggregation and propagation 
of parameter uncertainty through the use of fuzzy sets in 
PBPK models can (1) replace empirical analysis approaches, 
e.g. best-guess estimates, when little or no quantitative data 
is available, and (2) facilitate objective chemical risk 
assessment in humans when there is insufficient and/or 
imprecise data available to justify the use of probability 
distributions for traditional stochastic techniques, e.g. 
Monte-Carlo simulations. 

IV. CONCLUSIONS 
Building upon a previous simulation methodology [5], the 

PBPK model described in this paper represents the first 
attempt to predict, within a fuzzy set-based framework, 
intravenous pharmacokinetic profile in humans before in 
vivo experiments are conducted. The suggested approach 
evaluates the incomplete or imprecise data available during 
drug discovery and early development in a more integrated 
manner by formally capturing and propagating parameter 
uncertainty in human PBPK models. Further development of 
the modeling strategy, for example, through estimation of 

s'~
pK  via nonlinear fuzzy regression and extension to predict 

oral pharmacokinetics, will serve to further enhance its 
predictive capability.  
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