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Abstract— A common practice in microarray analysis is
to transform the microarray raw data (light intensity) by
a logarithmic transformation, and the justification for this
transformation is to make the distribution more symmetric
and Gaussian-like. Since this transformation is not universally
practiced in all microarray analysis, we examined whether the
discrepancy of this treatment of raw data affect the “high level”
analysis result. In particular, whether the differentially ex-
pressed genes as obtained by t-test, regularized t-test, or logistic
regression have altered rank orders due to presence or absence
of the transformation. We show that as much as 20%–40% of
significant genes are “discordant” (significant only in one form
of the data and not in both), depending on the test being used
and the threshold value for claiming significance. The t-test is
more likely to be affected by logarithmic transformation than
logistic regression, and regularized t-test more affected than
t-test. On the other hand, the very top ranking genes (e.g. up
to top 20–50 genes, depending on the test) are not affected by
the logarithmic transformation.

I. INTRODUCTION

The number of copies of single-stranded messenger-RNA
(mRNA) can be used to infer the amount of protein product
produced by certain gene, and is called the “expression
level”. Ideally, one would like to count the number of copies
of certain mRNA directly. But in microarray chips, the
amount of a specific mRNA is measured indirectly by the
emission of fluorescence light. It is necessary to transform
the raw data of light intensity obtained by optical detection
to a summarized quantity that indicates the expression level.
Deriving the expression level from raw data is called the
“low-level” analysis, and it can be complicated by the details
of the technology and chip platform [1], [2]. Reaching con-
clusions such as the determination of differentially expressed
genes using the expression level data is called the “high-
level” analysis.

After the expression level is derived from the raw
data, another preprocessing step is commonly practiced:
log-transformation. The standard motivation for the log-
transformation is that the distribution of the derived ex-
pression level is typically asymmetric with long tail at
the high expression end. Many parametric statistical tests
require variables to follow a Gaussian/normal distribution.
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The log-transformation is an attempt to convert an asym-
metric distribution to a symmetric and Gaussian-like one.
Other transformations for the purpose of “normality” are
also possible [3], such as square-root, Box-Cox [4], and
arcsine transformations. In microarray data, transformations
were proposed along the line of variance stabilization [5],
[6].

A novel alternative explanation of the use of log-
transformation might be that human perceive brightness
of light as the logarithm of light energy, similar to our
perceiving loudness of sound as the logarithm of sound
intensity. In general, all human perception of physical stimuli
is proportional to the logarithm of amount of stimuli, under
the names of Weber-Fechner’s law [7], [8] and Steven’s
law [9]. For the light-intensity-derived expression level, log-
transformation can be viewed as a way to measure the
“perception signal” from the data, although strictly speaking
it is a computer instead of a human being that reads the light
signal.

From the statistical point of view, logarithm transformation
can take down an outlier with extreme high value, thus
affecting the group mean. On the other hand, logarithm
transformation or any 1-to-1 transformation will not shuffle
the relative order of expression values, thus will not affect a
rank-based test result such as Wilcoxon-Mann-Whitney test
[10]. For a specific test or statistical model, the effect of
log-transformation on the result is not clear, even though
we know it has no effect if the test is rank-based, and has
some effects if there are outliers. For linear classifiers, the
violation of Gaussian distribution affect some methods more
(e.g. Fisher’s linear discriminant analysis, perceptron) but
less so on other methods (e.g., logistic regression, support
vector machine) [11].

Another note on investigating the effect of log-
transformation is that one can focus either on the whole list
of genes, or only on the top ranking genes. For example,
with a log-transformation, the top 1 and 2 differentially
expressed genes may be switched while the rank of all
other genes are unchanged. Even though the effect of log-
transformation on the whole list of genes could be small, the
minor rearrangement of the top ranking genes can have an
effect on the subsequent gene validation experiments.

We will examine the effect of log transformation on two
or three simple methods for selecting differentially expressed
genes on a real microarray dataset. Log-transformation is just
one factor that change the apparent value of data, there are
other factors as well such as the normalization procedure
during the “low-level” analysis, change of the probe set
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Fig. 1. Minus log of p-values of tests on log transformed vs. original data. The x axis is − log10(p-value) for the original expression data, and y axis
is − log10(p-value) for the log-transformed data. The top plot is for logistic regression and bottom plot for t-test. The four quadrants as split by x = 5
and y = 5 are indicated. Each point represents a gene.

design, change of the microarray platform, etc.

II. METHODS AND DATA

A. Student’s t-test

The Student’s t-test is used here as a representative of tests
that make assumption on variable normality. We expect the
normality requirement is met better for the log-transformed
data than the original data. The t-statistic is defined as the
ratio of the difference of two group means and the standard
error of this difference: t = (E1 − E2)/

√
s2
1/n1 + s2

2/n2,
where E1,2, s2

1,2, n1,2 are the mean, variance, and sample
size of group 1 and 2. The p-value given a t-statistic value
is determined by the Student’s t-distribution with degree of
freedom df . Usually, df is equal to n1+n2−2, but when the
variances in two groups are not equal, a more complicated
formula for df can be used [12]. We use such a method
as implemented in the R statistical package (http://www.r-
project.org/).

B. Logistic regression

Logistic regression is used to represent statistical models
which do not have a strong normality requirement. The
advantage for models or tests lacking such a requirement
is that these are more robust. The disadvantage for models
without the normality requirement is that when the variable
is in fact distributed as Gaussian, these are less “efficient”
as classifiers [13]. The significance of a single-gene logistic
regression can be determined by a likelihood-ratio test: (-
2) log-maximum-likelihood of the logistic regression model

subtract that of a null model follows a χ2 distribution with
one degree of freedom, under the null hypothesis. Thus given
the (-2) log-likelihood ratio (called “deviance”), the p-value
can be determined using the χ2 distribution.

C. Regularized t-test and significance analysis of microar-
rays (SAM)

Since low expression level also leads to low variance, t-
statistic can be high due to low expression level. Penalized
or regularized statistics add an extra term s0 to prevent
this small variance from inflating the statistic: d = (E1 −
E2)/(

√
s2
1/n1 + s2

2/n2+s0). SAM (significance analysis of
microarray) is a method for determining the value of s0 [14].
SAM test statistic, d-score, was calculated by the SAM pack-
age obtained from http://www-stat.stanford.edu/ tibs/SAM/.

D. Microarray data

The illustrative microarray data is a profiling study of
rheumatoid arthritis. There are 43 patients and 48 normal
controls, which is more than the 29 patients and 21 controls
used in the previous publication [15]. The mRNA was
extracted from the peripheral blood mononuclear cells. The
microarray data is obtained from the Affymetrix HG-U133A
GeneChip with 22,283 genes/probe-sets, and was normalized
by the Affymetrix microarray suite (MAS) program.

III. RESULTS

A. Proportion of discordant differentially expressed genes

Fig.1 shows the minus log of p-values of log-transformed
expression data vs that of un-log-transformed (raw) expres-
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Fig. 2. Rank difference d as a function of averaged rank Ra for all 22283 genes (A,B,C) and for top-400 genes (D,E,F). Both rank difference d and
averaged rank Ra concern the same gene on two different types of data (raw and log-transformed). (A) and (D) are results for logistic regression, (B) and
(E) are for t-test, (C) and (F) for SAM. The x-axis in (D,E,F) is in log scale to highlight the top-ranking genes. In (D,E,F), d = 50,−50, 100,−100 and
d = Ra, d = −Ra lines are drawn.

TABLE I

PERCENTAGE OF DISCORDANT GENES: (I+IV)/(I+II+IV)

logistic regression t-test
p0 I+IV II % (95%CI) I+IV II % (95% CI)

10−9 0 10 0% (0-0) 7 4 64% (35-92)
10−8 6 20 23 (7-39) 8 11 42 (20-64)
10−7 22 40 35 (24-47) 21 21 50 (35-65)
10−6 44 84 34 (26-43) 40 52 43 (33-54)
10−5 82 176 32 (26-37) 92 119 44 (37-50)
10−4 163 346 32 (28-36) 170 266 39 (34-44)
0.001 328 709 32 (29-34) 345 593 37 (34-40)
0.01 744 1698 30 (29-32) 771 1520 34 (32-36)

sion data, for both logistic regression (top) and t-test (bot-
tom). Taking all genes as a whole, the two sets of p-values are
highly correlated (correlation coefficients are 0.94 and 0.93,
respectively). In order to highlight the differences, especially
for the high-ranking differentially expressed genes, we split
the plot into four quadrants by a vertical line at x = a and
horizontal line at y = a. The parameter a = −log10(p0)
corresponds to gene selection threshold p0 for p-values. For
example, the a = 5 in Fig.1 corresponds a p-value threshold
of p0 = 0.00001.

The genes in quadrants I, II, and IV have at least one p-
value of the two (log and raw data) smaller than p0, whereas
the genes in quadrant II have both p-values smaller than p0. If
log-transformation has no effect on the gene selection, there
will be no points in quadrants I and IV. We use the percentage
of points in I and IV out of all points in I,II, IV as a measure
of the inconsistency between the test results on raw and
log-transformed data. If points in quadrants I and IV are
called “discordant” and those in quadrant II “concordant”,
this measure is the percentage of discordant genes among
all differentially expressed genes by either one type of data.

Table I shows the discordant percentage and their 95%
confidence intervals (CI) at various gene selection threshold
p0 (=10−9, · · · , 10−4, 0.001, 0.01). As expected, the t-test
result is more affected by the log transformation than logistic
regression: at all p0 threshold values, the percentage of
discordant differentially expressed genes is higher in t-test
than in logistic regression. The average discordant percentage
at eight p0 values is 27% for logistic regression and 44% for
t-test.

It was however surprising that for logistic regression,
except for the extremely differentially expressed genes (e.g.,
when p-value < 10−9, the discordant percentage is zero), the



discordant percentage is not negligible. If either one of the
raw or log-transformed data is used for logistic regression
analysis, as much as 10%–20% of the claimed differentially
expressed genes will not be claimed so by another data.

B. Ranking change due to log transformation

The effect of log-transformation can also be examined by
the ranking of a gene in both datasets. If log-transformation
has no effect, the rank of a gene by (e.g.) p-value will be
unchanged. We use the notation Rn(i), Rl(i) for the rank of
gene-i in the raw and log-transformed data, and define Ra(i)
as the average of the two: Ra(i) ≡ (Rn(i) + Rl(i))/2, and
d(i) as the rank difference: d(i) = Rn(i) − Rl(i). Fig.2
(A,B,C) show d vs. Ra for logistic regression, t-test, and
SAM (genes are ranked by absolute value of the d-score)
for all 22283 genes.

Fig.2 (A, B,C) indicate that for the whole gene set there is
a similar pattern for all three test-statistics: for high- and low-
ranking genes, they are high and low ranked in both raw and
log-transformed data (thus smaller rank differences). As the
majority of genes are not differentially expressed, the overall
scattering pattern in Fig.2 (A,B,C) may not be as interesting
as the behavior near the high-ranking differentially expressed
genes.

To focus on the top-ranking genes, Fig.2 (D,E,F) zoom in
for the top-400 genes (x-axis is in log scale). First, we notice
that for the very top genes (e.g. up to top-10), the ranking is
unchanged or changed very little by the log transformation in
any one of the three tests/models. Second, t-test has reached
rank-difference of d = 50 and d = 100 sooner (i.e., at a
higher ranking) than logistic regression, reconfirming our
previous conclusion that t-test is more likely to be affected
by log transformation than logistic regressions. Using the
d = Ra and d = −Ra envelope, we see that points are more
likely to be outside the envelopes for t-test than the logistic
regression. The third observation is that SAM test result is
affected even more by log transformation than t-test. In Fig.2
(F), many points are far outside the envelope region.

IV. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

Using one microarray dataset, we have shown that log
transformation may affect results on selecting differentially
expressed genes. If we call all genes that are significant by
tests on either raw or log-transformed data “differentially
expressed genes”, and those genes that are significant in

test of only one of the two types of data “discordant”,
the discordant as a proportion of the all (discordant and
concordant) differentially expressed genes can be as high
as 27% for logistic regression and 44% for t-test. The
larger discordant percentage for t-test confirms our general
understanding that tests that require variable normality are
more likely to be affected by variable transformation.

B. Future Works

We plan to extend the results here to other public domain
microarray datasets and to other tests, models, and measures
for determining differentially expressed genes.
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