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Abstract— It has been appreciated for at least a hundred
years that biological organisms contain control systems that
enable them to adapt to a changing environment and adjust
their internal systems when they need to proliferate. Even
so, we have little understanding of the role that many of the
control systems play. It’s only in recent years that mainstream
science has begun to study biological systems qualitatively
and to look specifically at dynamical responses. As a result it
might be possible that future cancer therapies will operate by
manipulating the control systems that have gone awry during
uncontrolled proliferation. This is a long term goal because it
would require a mind shift in the way some biologists approach
such problems. In this short paper I describe some of the main
control elements found in biological systems and illustrate their
use in biological networks. In addition I discuss some of the
strategies that one can use to build computational models.

I. INTRODUCTION

One of the striking features of biological systems is

the multitude of control systems that lace many cellular

networks. Feedback and feed-forward loops are found at all

levels of cellular organization, including metabolism, protein

and genetic networks. In the majority of cases we have little

understanding of their role. In most studies the existence of a

control loop in a system is only given cursory consideration

and in modern high throughput studies control systems are

usually entirely ignored. The reasons for this are partly down

to the difficulty, at least historically, in making the required

measurements but is also related to the way biologists

view biological systems as static structures. However, in

recent years new techniques, such as fluorescence tagging,

have been devised that permit real-time measurements of

dynamics at the molecular level. In addition, these studies

have been carried out on single cells which has revealed a

unexpected degree of rich dynamics [16].

If we take the reasonable view, that biological networks

can be treated as control systems then questions related to the

onset of cancer can be reduced to questions of how cellular

control systems misbehave in the disease state. Although the

onset and development of cancer is a complex and multi-

factor problem, uncontrolled proliferation can be attributed

in many cases to a failure of some control aspect inside the

cell. If we could understand the dynamics of cellular systems

from a control perspective, it might be possible to devise

strategies to correct the error.

Understanding biological systems is essentially a reverse

engineering problem. It is like trying to understanding an
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alien technology; we know that the technology probably
uses principles that are employed in our own technological

devices. However there are many things we don’t know; we

do not know in detail the properties of the component parts,

assuming we can identify them; we would also find it difficult

to make measurements of the internal state and although we

know gross input/output responses we do not understand how

the internal mechanisms generate the transfer relationship.

Biologists, however, have one great advantage over those

who would reverse engineer an alien artifact. Presumably

we would only have one artifact in our possession and

thus we would have to be very careful in how we study

the artifact lest we would destroy the only copy we have.

Biologists on the other hand have the advantage of access to

potentially millions of copies of an organism which means

that a biologist can destroy the system under study knowing

that another one is just a replication cycle away.

In the short paper I will cover some aspects of control

systems in relation to biological networks.

II. COMPUTATIONAL CAPACITY OF CELLULAR

NETWORKS

There are arguably three fundamental control related de-

vices repeatedly used in biological networks, these include:

• Feedback and Feed-forward control loops

• Covalent Modification Cycles

• Allostery, including gene-protein interactions

A. Feedback and Feed-forward Networks

Feedback and feed-forward mechanisms are the two basic

control motifs found in almost all biochemical systems. They

come in two flavors, negative and positive. The most well

known of these is the infamous negative feedback loop,

first discovered in metabolic systems by Umbarger [27]

and Yates and Pardee [32] in the 1950s. The most cited

property that negative feedback confers is homeostasis, that

is negative feedback stabilizes an end product in the face of

varying demand. However other less appreciated properties

include immunity to noise generated within the feedback

loop, linearization of the input/output response and a reduced

sensitivity to changes at the input. Some or all of these

properties may have biological significance.

Whereas negative feedback tends to have a stabilizing

effect, positive feedback has the opposite [6]. There are now

a number of examples cited in the literature where positive

feedback is used to generate two stable steady states, usually

designated high and low. Such systems are called bistable.

The two states tend to be stable and resist changing from
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one state to the other. As a result, positive feedback can be

used to create decision circuitry where a definite off and on

state is desired [7].
Feedback mechanisms are also employed to generate oscil-

latory dynamics. Negative feedback can be used to generate

oscillations simply by ensuring that the delay between signal

and action is long enough and that the feedback gain is

sufficiently high (Figure 1). Alternatively, a positive and a

negative feedback can be combined to form a relaxation

oscillator where the negative feedback drives the bistable

subnetwork from one state to another (Figure 2).
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Fig. 1. Feedback oscillator using negative feedback. G1 to G3 are genes,
P1 to P3 are proteins transcribed from their respective genes. w indicates a
waste node. Each protein can activate or inhibit the production of another
protein, indicated by positive and negative interaction loops.
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Fig. 2. Relaxation oscillator employing positive feedback. G1 and G2 are
genes, P1 and P2 are proteins transcribed from their respective genes. w
indicates a waste node. Each protein can activate or inhibit the production
of another protein, indicated by positive and negative interaction loops.

Feed-forward networks have a different set of properties

to the feedback systems. Although such motifs have been

discussed in relation to neural systems for many years, it

is only recently that feed-forward networks have been of

interest to the cellular network community [17], [23]. Feed-

forward networks are flexible and occur frequently in genetic

networks (apparently more frequently that feedback loops).

A negative feed-forward (sometimes termed an incoherent

type 1 network) can act as an amplitude filter (Figure 3);

for a given input concentration range the response of the

network is maximal. Given such a property, numerous other

devices can be constructed including event generators and

homeostatic devices. Such versatility may explain the fre-

quent occurrence of such networks in real biological systems.

B. Covalent Modification Cycles
One of the most sticking features of protein-protein net-

works is the prevalence of covalent modification cycles.

Such cycles form the backbone of many protein-protein

networks, particularly in higher organisms. Covalent mod-

ification permits an organism to use one protein in multiple
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Fig. 3. Two examples of feed-forward motifs [17], [23]. The symbol P1 to
P3 denote a particular biological process, usually the expression of a gene.
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Fig. 4. Response curve for the incoherent Type 1 feed-forward motif. The
x axis marks the concentration of the input signal (P3 in Figure 3) and the
y axis the output of the pathway, (P1 in Figure 3)

states and thereby effectively increase the number of proteins

and thus the network complexity. Covalent modification is

often implemented using phosphorylation as the species tag

but other approaches are employed, including methylation,

acetylation and uridylation.

It has been appreciated for many decades [8] that a

covalent cycle can show threshold properties and there is now

ample experimental evidence to support this view [2]. When

a covalent cycle acts as a threshold device it is behaving in

a manner similar way to an operational amplifier [11]. Like

an operational amplifier the behavior of covalent cycles can

be modified by introducing feedback loops. Thus in prin-

ciple, one could devise summers, integrators, differentiators

etc. from covalent cycles [21]. In addition, with sufficient

feedback and delay it is possible to generate oscillatory

dynamics[13] and with positive feedback it is possible to

generate bistable systems [7]. There are also subtle seques-

tration effects that can greatly influence dynamic behavior,

which on the whole have been largely unexplored [18].

C. Allostery/Gene-Protein Interactions

Allostery and it’s close companion, cooperativity, are

found in many proteins. One of the main characteristics

that such proteins have is a sigmoid response to effectors.

Similar behavior can also be found in gene-protein inter-

actions. Gene-Protein interactions can generate even more

varied behaviors including logic gates and complex analog

responses. The key aspect that allostery provides is linear

high gain (Figure 5). Without cooperativity, the response

of an allosteric enzyme would be nonlinear and low gain,

neither desirable characteristics for a control mechanism. The

gain generated by an allosteric enzyme is used to generate the
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necessary feedback strength while the linearity is required to

generate a proportional response difference between signal

and response.
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Fig. 5. Response curve for an allosteric model based on the MWC (Monod,
Wyman and Changeux [20]) mechanism. The graph shows the reaction
rate versus the concentration of inhibitor. Note that, unlike other kinds
of inhibition, allostery coupled with cooperativity provides a highly linear
response with a large gain (slope).

III. MODULARITY OF NETWORKS

The apparent complexity of biological networks is abun-

dantly clear when we view the many network graphs now

available as posters or diagrams in text books. However, we

perceive the network as being complex because we choose

to view the entire network in all it’s intricate detail and

are inevitably overwhelmed by the number of components

and connections. The engineering disciplines take a different

approach, rather than attempt to view the entire network,

engineers divide networks into modules, such modules are

further divided as necessary, resulting in a hierarchy of

functional descriptions. It is this separation of behavioral

levels that allows engineers to comprehend and build highly

complex information processing systems. In biology, we

can use a similar strategy by breaking biological networks

into simpler and more manageable modules. The process of

understanding complex biological networks then involves de-

scribing and locating functional modules in a larger network.

The difficult question then arises, what is a functional

module? There have been numerous discussions of this issue

in the literature [9], [26], [31] and a number of common

themes have emerged. A key idea is replacement, where a

module can be replaced without disturbing the rest of the

system behavior. With replacement comes the notion of an

interface, where a module has a defined interface which is

the point of contact between the module and the rest of the

system. Finally, the number of contact points at a module

interface will often be smaller than the number of interactions

internal to the module. This latter aspect is of interest because

it has been used to uncover modules in complex networks. In

particular, a common metric [4] used to uncover topological

modularity in networks is based on this very idea.

All the techniques employed today to discover modularity

are based on the notion of topological modularity, that is

finding topological patterns that might suggest a modular

structure. Although such work is a good starting point, what

we really want to seek is functional modularity. Unfortu-

nately this is a much more difficult problem and no clear

solutions currently exist.

To highlight the problem with delineating functional mod-

ular structure consider the example of the simplest network,

a simple linear chain of reactions (Figure 6).
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Fig. 6. Two figures, a) and b) showing the conventional way to depict
pathways. S1 to S3 are molecular species, the arrows between the species
represent reactions. Xo is a fixed boundary species. The second pathway
(b) has a feedback mechanism from species S3 to the first reaction.

We can write down the differential equations for this

system as:

dS1
dt

= vo(Xo, S1, S3) − v1(S1, S2)

dS2
dt

= v1(S1, S2) − v2(S2, S3)

dS3
dt

= v2(S2, S3) − v3(S3)

where vo to v3 indicate the reaction rate for the four

reactions in the pathway. Each reaction rate is described as

a function of one or more species, eg v1(S1, S2) means that

the reaction rate v1 (second reaction) is a function of S1 and

S2.

The S3 in the first equation is absent in the pathway

which has no feedback control. By examining the functional

dependencies we can redraw the conventional map to reveal

a much greater degree of control in the pathway.

Although redrawing the maps in this ways reveals many

more interactions, one can also see obvious regularity in

the control structure. It might be possible for example to

use computer based algorithms to search for specific control

patterns, thus rather than attempt to identify topological

patterns we could instead search for control patterns which

in turn would presumable indicate functional properties.

The question of identifying functional modularity in bio-

logical networks is an unresolved question and is, from my

perspective, one of the most challenging and important ques-

tions in systems biology. If we believe that by manipulating

the control systems in a cancer cells we can restore such cells
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Fig. 7. Redrawing a conventional pathway diagram to illustrate the detailed
control systems present even in the simplest pathway. Left-hand pathway
corresponds to Figure 6a and right-hand pathway to Figure 6b.

to their normal state then an understanding of the functional

structure of networks is important. In addition, once we

understand the functional structure of cellular networks we

can also use this information to greatly increase the reliability

of our computational models.

IV. BUILDING MODELS

I have so far discussed issues related to how biological

networks are controlled, however an obvious question is how

does one generate a model in the first place?

The starting point for any model is a topological map of

the known interactions. Often such topological maps will

take the form shown in Figure 8.

Fig. 8. A typical network interaction map as published in the literature. The
nodes on the map usual indicate protein species of a gene expression process.
Arrows are used to indicate whether one process activates or inhibits another.
The dotted lines indicate unknown interactions that might be present.

Unfortunately such interaction maps cannot be used to

derive a mathematical model because they are incomplete, in

particular they lack any information related to stoichiometry

and miss many important steps in the network. Instead

one must deal with stoichiometric maps which explicitly

indicate the transformations that occur in the model, such as

gene expression, protein turnover, covalent modifications and

metabolic processes. Control actions are represented either as

binding reactions which sequester important intermediates or

by explicitly including the control function as a term in a rate

law. I have converted the interaction map in Figure 8 into the

stoichiometric map shown in Figure 9. In this form we can

generate a mathematical model. The essential requirement

is that one should be able to discern consumption and

production rates around each species, something that cannot

be done with interaction maps.
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Fig. 9. Redrawn interaction map to reveal hidden reaction steps and make
explicit the stoichiometric nature of the network

Once a stoichiometric map has been drawn, each species

is converted into a differential equation describing the net

balance between production and consumption of that species.

This representation can be described using the equation

dS

dt
= Nv

where N is the stoichiometry matrix and v the rate

vector. The stoichiometric map is described by the N term

while the kinetics are described by the v term. In many

cases, particularly with genetic and protein networks, some

interactions may be missing and part of the process of model

building is to try and fill the gaps.

Once a satisfactory stoichiometry map is available, atten-

tion can turn to defining the kinetic laws at each reaction step.

This is where most of the difficulty arises since in many cases

the kinetics constants will be poorly known or not known at

all. The first decision to make however is to decide on the

types of kinetic laws to use. A modeler confronted with such

a decision has a number of possibilities to choose from. The

list below details the most common rate laws that can be

employed.

• Mass-Action Kinetics, used when very little data is

available or when it is known that the reaction is

governed by simple mass-action.

v = k
∏

Si

where k is the mass-action rate constant and Si the

concentration of a species. v is the reaction rate.

• Michaelis-Menten. The basic irreversible enzyme rate

law is useful for many situations. However care has

to be taken when enzyme and substrate concentrations

are comparable. Such cases can lead to significant

sequestration effects. This is a particular problem when

modeling protein-protein networks and in such situa-

tions, it is better to derive custom Michaelis-Menten

rate laws that takes into account such factors, see [18]

for an example.

v =
VmaxS

Km + S
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where Vmax is the maximal velocity, S the species

concentration and Km the Michaelis constant.

• Surprisingly unknown to many biologists, the reversible

Michaelis-Menten is the preferred equation over the

simple irreversible Michaelis-Menten rate law. Unless

it is known with some certainty that the reaction is

irreversible, the default choice should be this rate law.

As discussed earlier, reversibility is an important route

by which perturbation information is transmitted back

up a pathway. Metabolic pathway models benefit con-

siderably from using the reversible form.

v =
Vmax/KM1 (S1 − S2/Keq)
1 + S1/Km1 + S2/Km2

where the symbols in the equation have a similar mean-

ing to the previous equation. Keq is the equilibrium

constant for the reaction.

• The Hill equation is often the work horse for generating

sigmoidal responses and as a first approximation, it is

often used to model gene-protein interactions, partic-

ularly for simple cases. The most important variants

include the addition of repression and activation. Ac-

tivation:

v = Vmax
Sn

Kn + Sn

Repression:

v =
Vmax

Kn + Sn

n is the Hill coefficient, the remaining symbols are as

described previously.

• Much more elaborate is the reversible Hill equation by

Hofmeyr and Cornish-Bowden [10] and is a good sub-

stitute for the Monod, Wyman, Changeux Model [20]

when dealing with metabolic pathways.

v =
VfS1/KM1 (1 − Γ/Keq) (S1/KM1 + S2/KM1)

n−1

1 + (S1/Km1 + S2/Km2)
n 1+(X/Kx)n

1+α(X/Kx)n

The symbols are as described previously. Γ is the mass

action ratio and Vf is the forward maximal velocity.

• For more complex gene-protein interactions the recom-

mendation is to derive custom rate laws using the rapid-

equilibrium methodology. This approach was popular-

ized by the work of Shea and Ackers [1]. They modified

the traditional rapid-equilibrium method by relating the

equilibrium constants of binding steps to the binding

energy (in the form of ΔG) between the transcriptional

factors (or RNA Polymerase) and the DNA binding

sites.

• Finally, in this short list, one should also mention the

linlog approximation. In building metabolic models, the

linlog approximation is an extremely useful equation

to use. It requires only minimal information and has

been shown to provide a very good approximation to

Michaelien type responses, the reader is referred to [15]

for more details.

v

Jo
=

[
e

eo

](
1 +

∑
ε

x

xo

)

where Jo is the reference velocity, eo the reference

activity of the enzyme, xo is the reference species

concentration and ε is the elasticity coefficient. Note

that the summation refers to the number of interactions

that could affect the enzyme.

The above list is obviously by no means complete, in

particular the rapid-equilibrium and steady-state assumptions

can be used to derive many different rate laws, including

different kinds of inhibition and activation. The book by

Segel [22] illustrates many more kinetic schemes.
With the topology and reaction kinetics decided, decisions

have to be made on what values to give the many constants

in the model. These constants will include terms such as

Vmax’s, Km’s, Hill coefficients, binding constants etc. In

many cases, these constants will not be known. For metabolic

models the situation is better because in the days when

metabolic pathways were being elucidated, characterizing

the enzymes of the pathway was considered an important

part of the work, as a result there is a rich supply of data

concerning kinetic data for metabolic enzymes. Some would

argue that given the in vitro nature of this data, and in many

cases the unrealistic conditions under which the data was

measured, this data is highly suspect. However, such data has

proved to be useful, at least for giving the basic magnitudes

of the various constants. In addition, it has been found that

biological systems tend to be remarkably robust and in many

cases, accurate determinations are not important except for a

small number of constants. One strategy is to use a sensitivity

analysis on the initial model to determine which constants

are the most important in determining model behavior, in

this way the modeler can focus on obtaining accurate values

for the most important constants of the model.
For protein-protein networks the problem is more difficult,

largely because the kinetic assays are much more difficult

to carry out. However, even here, due to the general ro-

bustness of networks, one can often develop models that

qualitatively reproduce the expected behavior [3]. This brings

us to another point, in the initial development of a model it

might be sufficient to develop a model that can qualitatively

reproduce a particular biological phenomenon. The reason

why this is a credible approach is because ultimately a model

is only useful if it can predict behavior not yet observed and

qualitative models can predict qualitative behavior.
Another strategy used by some authors [3], [5] when

building larger models is to modularize a model into distinct

functional parts and to focus on getting the functional part

to work before moving on to the whole model. If the

functional parts are expected to have particular behaviors

such as bistability or oscillatory dynamics, tools such as the

bifurcation discovery tool [4] can be use to place the model

in the correct parameter region before work commences on

fine tuning the parameter values.
Developing models capable of quantitative prediction is

more difficult. One approach is to adjust the constants in a
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model so that the model predicts gross phenotypic behavior.

This approach has proved particulary useful in modeling the

cell cycle where one can measure times between particular

events and the size of cells at particular times during the cell

cycle. Such properties can be easily measured in a model,

moreover, there are many known mutants which affect these

properties, for example by lengthening or shortening times.

Such mutants can be induced in the model and the effects

observed. John Tyson and his colleagues [24] have used this

technique extensively to build a high realistic and accurate

model of the yeast cell cycle [25]. In addition the Tyson

group has also developed software that automates the process

of validating the many mutants and their effects on the

model [28].

Another approach requires more detailed measurements

of the behavior of the system in time. Such measurements

should attempt to include high resolution time course data of

selected species in the model. In the past this was difficult

if not impossible to do, however with the rapid development

in fluorescence tagging (the ubiquitous GFP tag) in recent

years and the focus on single cell measurements it is actually

becoming possible to make such measurements. Much of this

impetus is coming from the synthetic biology community

where high resolution measurements are required to confirm

the functional properties of the synthetic network [12].

With time course data one can employ parameter fitting

techniques. This method involves fitting the set of model

differential equations to time course data. The idea is that

the constants in the equations are adjusted until the time evo-

lution of the model matches the experimentally determined

time course behavior. There is a considerable literature on

this topic and for the uninitiated the paper by Mendes [19]

is recommended. For a more detailed overview, the paper by

Kremling et. al. [14] covers additional topics.

In the final analysis, much depends on the experience of

the model builder. After building a number of models one

will often come to realize what values parameters should

have in order to elicit a certain behavior. In addition, with

enough experience it is also possible to suggest missing

interactions. Such predictions are of course one of the main

reasons for building models. A critical factor in the success

of a model is the availability of suitable data but what is

very important is that a model should drive the experimental

agenda, not the other way round. A number of recent

projects have failed in this respect because the modeling

was secondary to the experimentation and as a result they

did not to live up to expectations. This approach is new to

many biologists and the transition is certainly difficult.

V. CONCLUSIONS

The development of Systems Biology in mainstream sci-

ence is still early. On the whole, we still have a very poor

understanding of how most, if not all, biological networks

operate at the functional level. Even glycolysis, the first

documented pathway is not fully understood, we do not

understand for example the role for many of the feedback

and feed-forward loops in glycolysis. Moreover, although

we have detailed molecular structures for all the glycolytic

enzymes we only have adequate kinetic descriptions for a

few. Most of our kinetic information we have dates from the

1960s and 70s when it was popular to characterize enzymes

kinetically. The lack of data is not a technological problem

but a sociological one. Fortunately, the possession of detailed

kinetic information for every reaction step in a model is

not critical and for many steps it can be sufficient to use

some form of kinetic approximation [29]. One aspect that

is in the modelers favor is that many systems appear to

be relatively robust to parameter changes (See [30] for a

detailed and accessible discussion of this topic). I would

therefore suggest that the lack of kinetic data may not be the

most important impediment to building successful models

even though some authors claim it to be. I believe what is

more important than kinetic data is the possession of high

resolution measurements of state variables, that is real-time

measurements of protein and gene activity.

There are encouraging signs in the research community, in

particular the new field called synthetic biology may point

the way forward [12]. Rather than catalog parts and con-

nections, synthetic biology attempts to reconstruct networks

and to study their dynamics in detail, experimentally and

by building computational models. Technological advances,

particulary in cell counting techniques and light microscopy

enable synthetic biologists to collect large amounts of high
resolution data on a small number of observables. This

is in contrast to contemporary high-throughput approaches

which collect low resolution data on many observables. I

think the most encouraging result so far to come from

synthetic biology [12] is that our basic understanding of

physical biochemistry appears to be largely correct, if it

wasn’t the computational models would not match so well

the experimental results. Some authors claim that building

computational models is a futile effort given our current un-

derstanding of biological processes, however this is patently

not true given the results from synthetic biology. If there is

one rule of thumb to running a successful modeling project,

it is that the modeling should drive the experimental agenda,

and not the other way round. Is is only by forcing the

modeling process to the top of the pile that one comes to

realize what data are missing and what predictions need to be

tested. By a step by step process, from model to experiment

and back again, will the model converge on to the biological

reality.

What does this have to do with cancer research, probably a

lot more than one might realize. The systems that control cell

proliferation appear to incorporate devices and control strate-

gies that can be found in our own technological systems.

The cells monitor their internal and external environments

and decide from the multitude of inputs the next course

of action, such decisions are computed through protein

networks. A breakdown of the decision process is clearly bad

for the cell and is something biological cells appear to have

attempted to mitigate since in the event of excessive DNA

damage for example, many cells will initiate apoptosis to

protect the organism. Sometimes the failsafes do not operate
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and cell proliferation can result. To understand the control

mechanisms at work and to find ways to intervene that can

return control back to the normal state is clearly something

we would all like to see. However there needs to be a change

in the mind set in order to achieve this. The most promising

avenue I feel is work carried out by researchers on the

time course dynamics of proteins in single cells [16]. Such

work has revealed an unexpected rich variety of dynamical

behavior. This work is reminiscent of the synthetic biology

community in that single cell studies focus on measuring

at high resolution, a few observables and then attempting

to relate these measurements back to computational models.

It is these kinds of studies that will reap the most benefit

to understanding uncontrolled proliferation at the protein

network level. Ultimately this will also lead to reliable

computational models which in turn will be indispensable

to devising new therapeutic approaches.

VI. ACKNOWLEDGMENTS

The author gratefully acknowledge the contribution of

the Department of Energy (GTL) and the National Science

Foundation (0432190 and FIBR 0527023) for their generous

support. I would also like to thank Vijay Chickarmane and

other members of my group for many useful discussions.

REFERENCES

[1] G K Ackers, A D Johnson, and M A Shea. Quantitative model for
gene regulation by lambda phage repressor. Proc Natl Acad Sci U S
A, 79(4):1129–1133, Feb 1982.

[2] Gregoire Altan-Bonnet and Ronald N Germain. Modeling T cell
antigen discrimination based on feedback control of digital ERK
responses. PLoS Biol, 3(11):e356, Nov 2005.

[3] V. Chickarmane, A. Nadim, A. Ray, and H. M. Sauro. A p53 oscillator
model of dna break repair control. arXiv, arXiv:q-bio.MN/0510002v1,
2005.

[4] V. Chickarmane, S. R. Paladugu, F. Bergmann, and H. M. Sauro.
Bifurcation discovery tool. Bioinformatics, 21:3688–90, 2005.

[5] A Csikász-Nagy, D Battogtokh, K C Chen, B Novák, and J J Tyson.
Analysis of a generic model of eukaryotic cell-cycle regulation.
Biophys J, 90(12):4361–4379, Jun 2006.

[6] J. E. Ferrell. Building a cellular switch: More lessons from a good
egg. BioEssays, 21:866870, 1999.

[7] J. E. Ferrell. Self-perpetuating states in signal transduction: positive
feedback, double-negative feedback and bistability. Current Opinion
in Cell Biology, 14:140–148, 2002.

[8] A. Goldbeter and D. E. Koshland. Ultrasensitivity in biochemical
systems controlled by covalent modification. interplay between zero-
order and multistep effects. J. Biol. Chem., 259:14441–7, 1984.

[9] L. H. Hartwell, J. J. Hopfield, S. Leibler, and A. W. Murray. From
molecular to modular cell biology. Nature, 402(6761 Suppl):C47–C52,
1999.

[10] J H Hofmeyr and A Cornish-Bowden. The reversible hill equation:
how to incorporate cooperative enzymes into metabolic models. Com-
put Appl Biosci, 13(4):377–385, Aug 1997.

[11] W. G. Jung. IC Op-Amp Cookbook. Prentice Hall PTR; 3rd edition,
1986.

[12] Mads Kaern and Ron Weiss. Synthetic gene regulatory systems. In
Jrg Stelling Zoltan Szallasi and Vipul Periwal, editors, System Model-
ing in Cellular BiologyFrom Concepts to Nuts and Bolts, chapter 13,
pages 269–298. MIT Press, 2006.

[13] B. N. Kholodenko. Negative feedback and ultrasensitivity can bring
about oscillations in the mitogen-activted protein kinase cascades. Eur.
J. Biochem, 267:1583–1588, 2000.

[14] A Kremling, S Fischer, K Gadkar, F J Doyle, T Sauter, E Bullinger,
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