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Abstract—The challenge of biomarker identification for 
bionanotechnology is that we need to find less than ten 
potential biomarkers from high throughput data so that 
quantum dot synthesis and imaging can be effective. Among all 
the extensive biomarker research, the novelty of our research is 
to reduce the number the biomarkers by studying the efficacy 
of several classifiers and error estimation methods. Specifically, 
we are using renal cancer expression data.  The dataset consists 
of 31 microarray samples divided into four classes--clear cell, 
oncocytoma/chromophobe, papillary, and angiomyolipoma.  
Each class is compared to all other classes using error 
estimation methods for support vector machines (SVM), 
Fisher's discriminant (FD), and signed distance function (SDF).  
Prior knowledge of significant biomarker from a previous 
study is used to score the effectiveness of each classifier in 
correctly identifying these biomarkers.  We have achieved 
intelligent model selection for biomarker identification so that 
the total number of nano-imaging targets is small. 

I. INTRODUCTION 

Biomarker identification is generally an unsupervised 
process in which a dataset is blindly mined for significant 
biomarkers before any knowledge can be applied. In such a 
scenario, it is difficult to know if the most optimal algorithm 
is being used to find these biomarkers. For instance, if a set 
of biomarkers is identified, they can be validated with expert 
knowledge bases or literature to determine the accuracy of 
the algorithm in terms of true and false positives. If a 
different algorithm were to be used, it is highly likely that a 
different set (possibly with some overlap) of biomarkers 
would be discovered. This process of analysis followed by 
validation is problematic in terms of model selection for two 
reasons.  First, it is very slow, since validation in traditional 
wet labs is not high-throughput compared to typical 
platforms such as microarrays and mass spectrometry. The 
number of candidate biomarkers may also be very large. 
Second, it is difficult to compare the performance of 
different algorithms if they identify different sets of 
significant biomarker candidates without knowledge of 
which biomarkers are true positives.  Although high 
throughput technologies such as microarrays and mass 
spectrometry have enabled us to quickly process biological 
data, biomarker identification is limited by the slow 
validation process and frequent false positives due to a lack 
of samples. 

This study proposes a method to improve the process of 
model selection for microarray data given a known set of 
significant biomarkers. Although number of known 
significant biomarkers is expected to be a small fraction of 
the total significant biomarkers, this small piece of 

knowledge provides a reference for determining the 
accuracy of a model for a given dataset. In almost all 
biological experiments, some knowledge of the biological 
processes involved may be enough to provide this vital 
information. In many cases of algorithm development, 
existing datasets are used for which a comprehensive 
biomarker identification and validation have been 
conducted. For this study, a renal cancer dataset consisting 
of several classes are used for which some genes are known 
to be differentially expressed [1]. 

Genetic biomarker identification is an important 
component in the development of predictive and 
personalized medicine. In this work, significant genetic 
biomarkers from a previous renal cancer study are used to 
select optimal classifier models. These classifier models are 
applied to gene expression microarray data originally used to 
identify the differentially expressed biomarkers through 
conventional methods. Renal cell carcinoma (RCC) is the 
most common malignant neoplasm of the adult kidney, 
comprising 3% of all human cancers [2]. Localized tumors 
can be detected by abdominal imaging and cured by surgery 
[3]. However, 25-40% of cases occur with extrarenal growth 
or metastases [4], and one-third of apparently localized 
lesions develop metastases during the postoperative course 
[5]. Advanced RCC responds poorly to systemic therapy and 
has a 5-year survival rate of less than 10% [6, 7]. Thus, 
biomarkers that improve diagnostic, prognostic or 
therapeutic classification would have significant clinical 
benefit.  To address this need, microarrays have been used to 
discover candidate renal tumor expression markers [1, 5, 8, 
9].  A limited number of selected markers have been 
validated by immunohistochemistry, resulting in novel 
bioassays with potential clinical utility for renal tumor 
classification.  However, previous approaches to marker 
selection have not been standardized and thus may not have 
identified the optimal immunohistochemical targets.  In 
addition, while immunohistochemistry is the current method 
of choice for tumor classification by pathologists, it is 
limited by difficulties in quantifying data and probing 
markers simultaneously in multiplex assays.    Therefore, the 
aim of this study is to optimize statistical methods for 
selecting candidate biomarkers based on existing microarray 
data from renal tumors.   Selected markers will be used to 
develop novel immunoassays based on nanoparticles such as 
fluorescent quantum dots, which provide the potential for 
quantitative measurements in multiplex analyses. 
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II. METHODOLOGY 

A. Dataset 
Microarray experiments were performed on frozen 

specimens from 13 clear cell RCC, 5 papillary RCC, 4  
chromophobe RCC, 3 oncocytoma and 6 angiomyolipoma to 
obtain 8746 gene expression values per chip. The Emory 
University and Atlanta VA Medical Center Departments of 
Pathology & Laboratory Medicine diagnosed tumors using 
standard histopathologic criteria [4]. Carcinoma grading and 
staging were based on the standard Fuhrman nuclear grading 
system and Tumor-Node-Metastasis staging system 
respectively [4]. The microarray data was normalized using 
GCRMA procedure available at 
http://www.bioconductor.org/. 

For each subclass, a set of biomarkers is known to be 
significant in that they are either up- or down-regulated in 
relation to samples in all other classes. These significant 
biomarkers are taken from a previous study on the same 
dataset [1]. In the clear cell (CC) class, 81 genes selected 
based on expression and gene ontology are differentially 
expressed between clear cell vs. other samples, 61 genes for 
chromophobe RCC/oncocytoma (CHR/ONC), 12 genes for 
papillary RCC (PAP), and 38 genes for angiomyolipoma 
(AML).  These differentially expressed genes represent 
candidate biomarkers for diagnostic classification of renal 
tumor subtypes.  Classification is clinically important 
because these tumor subtypes are associated with distinct 
clinical features, prognosis and response to therapy [4].  For 
example, advanced clear cell tumors respond variably to 
antiangiogenic and immunomodulatory regimens, while 
other subtypes are generally non-responsive [7, 10].  Of 
particular note, the CC markers include numerous genes 
related to immune response and angiogenesis, which may be 
relevant in predictive bioassays for therapeutic response. 

B. Biomarker Identification 
Biomarker identification is the process of reducing the 

often high dimension of ill-posed biological data (microarray 
or mass spec) and identifying features (biomarkers) which 
are able to differentiate biological samples into predefined 
classes. Statistically, differentiating features have well 
separated distributions such that the overlap is minimal. In 
large sample size studies, these distributions may be 
assumed to be Gaussian, thus simple methods which test the 
difference between distribution means, such as the t-test, 
may be used.  In typical microarray experiments, however, 
sample sizes are often small and expression values are 
seldom normally distributed. For these cases, resampling 
methods have proven to be very effective error estimators 
and can be used in conjunction for any type of classifier [11, 
12].  In this study, the support vector machine (SVM) [13], 
Fisher’s discriminant (FD) [14], and signed distance 
function (SDF) [15] classifiers are used to rank each 
microarray feature by increasing error estimate. For each 
classifier several resampling error estimation methods are 
used: resubstitution (training error), resubstitution with 
bolstering (error smoothing) [16], leave-one-out cross 
validation, and 0.632 bootstrap [12, 17]. In addition, each 
error estimation method is tested with several different 

kernels: linear, radial basis gamma 1, radial basis gamma 10, 
and radial basis gamma 100 (bolstering is not used with 
radial basis). Therefore each of the three classifiers is 
applied to a dataset thirteen times. 

Each of the four datasets (CC vs. All, CHR/ONC vs. 
All, PAP vs. All, and AML vs. ALL) is associated with a list 
of significant biomarkers discovered in a previous study [1].  
Once error estimates have been computed for all features 
using one of the classification/error estimation methods, the 
difference between distributions of error estimates for 
significant and insignificant genes is computed using a 
simple metric:   

VSVI
ESEIS

where EI and ES are the expectation or mean of insignificant 
and significant gene error estimates, respectively.  Likewise, 
VI and VS are the variance of insignificant and significant 
gene error estimates, respectively. A larger, positive, score 
implies that the differences in distribution of insignificant 
and significant genes are larger and correctly ordered 
(significant genes should have errors closer to zero).  Since 
significant gene sets are invariant for a dataset, a comparison 
of these scores is essentially a comparison of gene ranking 
methods. 

III. RESULTS  

Thirty nine ranking methods were used (3 classifiers 
and 13 resampling methods) to compute error estimates for 
each of the four renal cancer datasets. The score for each 
method and dataset were computed using the available list of 
significant biomarkers. For all four datasets, the SVM 
classifier scored highest in distinguishing significant 
biomarkers from insignificant biomarkers compared to the 
FD and SDF classifiers. For the CC dataset, two methods – 
linear resubstitution with bolstering and linear bootstrap – 
scored very high with the bootstrap method slightly higher 
(fig 2). The linear resubstitution with bolstering method 
scored highest for the CHR/ONC dataset (fig 3). In contrast, 
both the PAP and AML datasets scored highest with the 
radial basis, gamma 1, resubstitution method (figs 4, 5). The 
SDF classifier was very competitive with the SVM, scoring 
higher for some methods, although not highest overall. The 
FD classifier was competitive with the SDF for only the CC 
dataset.   

In addition to the proposed classifier scoring method, 
standard receiver-operator characteristic (ROC) curves were 
used to compare the best and worst classifier models for 
each of the four subtypes (fig 6).  A larger area under the 
ROC curve indicates a better classifier.  The ROC curves 
clearly validate the selection of best and worst classifier 
models, since the area under the curve of the worst classifier 
model in some cases is close to 50%, indicating a nearly 
random classification.   

These results suggest that, for specific datasets, the 
choice of classifier and error estimation method plays a 
significant role in identifying differentiating biomarkers. 
Although the score metric for each method is very simple, 
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this metric produces very different results when random 
significant biomarkers are selected (not shown). This 
suggests that the score may be used to ascertain the 
probability, or p-value, that a set of biomarkers is 
significant.   

Fig. 1. Thirteen different error estimation methods are used for each of the 
three classifiers.   

Fig. 2. Clear cell renal cell carcinoma vs. remaining samples analyzed using 
all classifiers and error estimation methods. The SVM linear bootstrap 
method is the most accurate differentiator of significant and insignificant 
biomarkers. 

Fig. 3. Chromophobe renal cell carcinoma/oncocytoma vs. remaining 
samples analyzed using all classifiers and error estimation methods. The 
SVM linear resubstitution with bolstering method is the most accurate 
differentiator of significant and insignificant biomarkers.

Fig. 4. Papillary renal cell carcinoma vs. remaining samples analyzed using 
all classifiers and error estimation methods. The radial basis resubstitution 
with a gamma parameter of 1 is the most accurate differentiator.

Fig. 5. Angiomyolipoma vs. remaining samples analyzed using all 
classifiers and error estimation methods. The radial basis resubstitution with 
a gamma parameter of 1 is the most accurate differentiator.  

Fig. 6. Receiver-operator characteristic (ROC) curves comparing the best 
classifier/kernel/error estimation method (black line) with the worst (blue 
line) for each of the four subtypes.  

IV. DISCUSSION

In order to apply quantum dot technology to cancer 
diagnostic problems, quantum dots should be conjugated to 
highly specific and sensitive biomarkers which accurately 
represent disease states.  Ideally, only a small number of 
these biomarkers, should be used in a single assay to ensure 
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that fast and accurate interpretation is possible in the clinical 
setting.  Existing algorithms, however, are inefficient and the 
biomarker selection process should be reexamined to 
increase the confidence of biomarkers and to reduce the 
overall life-cycle of the validation process.   

In a typical biomarker selection process, the initial data 
analysis is more or less blind.  In other words, machine 
learning parameters and statistical assumptions are arbitrary 
and often too simplistic for the problem at hand.  The 
resulting biomarkers discovered in the process are then 
validated through a lengthy and possibly expensive study, 
often leading to the realization that the analytical parameters 
and assumptions need to be slightly modified.  But because 
no stringent method for selecting initial parameters and 
assumptions for a particular dataset does not mean that 
initial parameter selection needs to be completely arbitrary, 
especially when involving the full validation process, be it 
literary or experimental.   

Enough biological knowledge has been gathered for 
almost every major human disease that the biomarker 
selection process can be modified with the potential for 
increased efficiency. The process can be modified by 
assuming that some biomarkers are known in advance.  Then 
initial machine learning parameters can be selected to 
optimize the number of correct biomarkers discovered. 
Essentially, this method simplifies and improves the overall 
process of biomarker selection by incorporating prior 
knowledge into not only the classification of samples, but 
also into the feature selection process.  Once optimal 
machine learning parameters have been selected for a 
dataset, the algorithm can be used to discover new 
biomarkers.  Because these new biomarkers are related to 
existing, validated biomarkers, they may inherently be more 
relevant than biomarkers discovered with arbitrary 
parameters.   

The results of this study suggest that classifiers and error 
estimation methods for selecting significant biomarkers 
differ significantly in terms of the resulting rank order of 
biomarkers.  Optimal machine learning parameters were 
selected for a multiple class renal cancer microarray dataset 
based on significant genes identified in previous studies.  
The results of this study will be used to continually improve 
the panel of significant biomarkers for use with quantum dot 
nanotechnology in clinical applications.   
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