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Abstract— The timing of a behavioral response, such as a
button press in reaction to a visual stimulus, is highly variable
across trials. In this paper we describe a methodology for single-
trial analysis of electroencephalography (EEG) which can be
used to reduce the error in the estimation of the timing of the
behavioral response and thus reduce the error in estimating the
onset time of the stimulus. We consider a rapid serial visual
presentation (RSVP) paradigm consisting of concatenated video
clips and where subjects are instructed to respond when they
see a predefined target. We show that a linear discriminator,
with inputs distributed across sensors and time and chosen
via an information theoretic feature selection criterion, can be
used in conjunction with the response to yield a lower error
estimate of the onset time of the target stimulus compared to
the response time. We compare our results to response time and
previous EEG approaches using fixed windows in time, showing
that our method has the lowest estimation error. We discuss
potential applications, specifically with respect to cortically-
coupled computer vision based triage of large image databases.

I. INTRODUCTION

During perceptual decision making, behavioral response
times can vary significantly. The cortical origins of such
response time variability, specifically during rapid serial
visual presentation, have been previously studied [1], with
results showing that the variability appears to arise during
the characteristic P300 response. Such variability can be
seen from the perspective of estimating the onset time of
the stimulus, where the estimation requires an EEG signal
which is detectable single-trial and is locked to the visual
stimulus.

In this paper we describe a method for estimating the
visual stimulus onset time using feature selection in the
space of the EEG data. We use a mutual information based
feature selection (MIFS) method to identify signatures in
the EEG which are distributed across sensor and time and
are informative about the image class. We then use a linear
discriminator to project the identified feature space to a one-
dimensional space that best discriminates target from non-
target responses. These steps are computed using training
data. We apply the discriminator across time and use the
timing of maximal discrimination in the EEG sensor space
and the mean response time computed from the training data
to estimate the onset time of the visual stimulus on test data.
We compare this method with previous methods which use
fixed time EEG features and show that the estimation of the
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onset time of the visual stimulus is better when using our
feature selection method.

II. METHODS

A. Paradigm

The experimental paradigm consisted of two types of
video clips (each is 10 seconds long): 1) a “nature” clip
without people in it (“distractor clip”) and 2) a clip with a
person(s) in it, from the first frame to the last (“target clip”).
A set of ten clips was concatenated to form a trial, where one
(and only one) of the ten clips was a ”target” clip. The target
clip could be from the second to the last clip in a trial. Each
trial started with a fixation image (also 10 seconds long, not
part of the ten video clips) which was a white cross on the
black background. The trial sequences were presented ten
times faster than the normal speed. There were 60 trials in
all.

Subjects were required to make a button response as soon
as they saw a target. Sequences were randomly presented to
the subjects.

B. Subjects and Data Preprocessing

Seven adult subjects participated in the experiment. All
subjects had normal or corrected to normal vision and re-
ported no history of neurological problems. Informed consent
was obtained from all participants in accordance with the
guidelines and approval of the Columbia University Institu-
tional Review Board. One subject was later excluded from
analysis because of frequent eye blinks and eye movements.

Sixty-channel EEG data as well as the button response and
stimulus events were recorded in an electrostatically shielded
room. The sampling frequency was set to 1 kHz. Raw data
were visually-inspected and trials with large eye movement
were excluded. Following data acquisition, DC drift and
high-frequency noise were removed by software-based filters.
Eye-blink and eye-movement activity was recorded and later
removed from the EEG recordings using PCA ([2]).

C. Estimating the Timing of Target Onset

Given a button press in response to a target, if one knows
the onset time of the stimulus, one also knows the response
time. We estimated the response time using a three-step
process. First we identified a set of EEG features, distributed
across sensors and time, using a MIFS method. Next a
linear discriminator was trained using logistic regression that
projected from the feature space found in the first step to a
one-dimensional space and maximally discriminated target
from non-target responses. These two steps were based on
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the training data. Lastly, given a button response, the target
onset time was estimated based on the mean response time
of the training data and the projection result from the linear
discriminator.

1) Detecting Neural Signatures of Perceived Target Clips
using MIFS: To find a feature space optimal for estimating
the stimulus onset time, we first selected several features
from high-dimensional spatio-temporal EEG data that best
discriminated between responses to target and non-target
stimuli.

In [3], Battiti proposed a MIFS method in supervised
classification, where the following objective function is used
to select a new feature f̂ ,

f̂ = arg max
f

[I(f, c) − β
∑

i

I(f, f ′
i)]. (1)

The method is iterative, such that a set of features is selected
for the discrimination. The first feature is the one that has
the maximal mutual information with the class labels. Here
f are candidate features, c is the vector of class labels, and
f ′

is are features that already have been selected. I(a, b) is
the mutual information between feature a and b, and it is
defined as,

I(a, b) = I(b, a) =
∑

a,b

P (a, b) log
P (a, b)

P (a)P (b)
. (2)

β is a weighting on the penalty of choosing features
which have high mutual information with previously chosen
features. i.e., the method searches for the feature that is
informative about the class without being predictable from
the current set of features. In [3], it was found that a
value of β between 0.5 and 1.0 was appropriate for many
classification tasks.

Equation (1) can be seen as a simplification of the more
generalized form:

f̂ = arg max
f

[I(f, c) − β · I(f,
⋃

i

f ′
i)], (3)

where I(f,
⋃

i f ′
i) is the mutual information between the

new feature f and all selected features. Since computing
I(f,

⋃
i f ′

i) is expensive and the “curse of dimensionality”
appears when the number of selected features is large,
instead, in [3] they used

∑
i(f, f ′

i) (the sum of the mutual
information between a new feature and each selected fea-
ture). However, as the number of selected features becomes
large, this tends to overestimate I(f,

⋃
i f ′

i), and the second
term in Equation (1), β ·∑i(f, f ′

i) , will dominate the first
term, I(f, c). As an alternative, Peng et al.([4]) proposed
using β = 1/N , where N is the number of selected features.
Combined with

∑
i(f, f ′

i), this means they consider the
average mutual information between the new feature and
each selected feature.

In our method, we combined these two solutions such that,

f̂ = arg max
f

[I(f, c) − β

N

∑

i

I(f, f ′
i)]. (4)

The value for β and the number of features were optimized
by analysis on training data.

The difference between the true mutual information Ī and
the estimated I can be approximated as ([3]),

ΔI = I − Ī ≈ 1
2M

(KcKf − Kc − Kf ). (5)

Where Kf is the number of quantization levels for the
feature data and Kc for the class labels. M is the number of
samples. For our two-class discrimination problem, Kc = 2.
From this equation we see that the smaller the value of
Kf , the smaller ΔI will be. However, if the statistical
distributions contain substantial structure, using a small value
of Kf tends to cancel these details and reduces the estimated
mutual information [3]. In [3], the authors recommended
Kf = 10. Here we used a Kf value of eight and obtained
good results.

2) Linear Discrimination (LD): After a set of features
were found, linear discrimination using logistic regression
was applied on the selected features, where

y(t) =
∑

i

vixi(t) (6)

is maximally discriminating between two conditions, with
non-target trials corresponding to lower y values and target
to higher values. Here i indexes the features and xi(t)s are
the feature data. In our application, xi(t)s were EEG data
distributed across sensors and time with a window length of
T (t = 1, 2 . . . , T ), extracted by the MIFS method. We set
the window length to be 50ms in our analysis. All xi(t)s
were shifted to the stimulus onset for later processing. An
optimal set of weights, vi, were computed to maximally
discriminate between two labelled classes of features. Since
each feature was a multi-dimensional vector in our case, the
discriminating component ȳ was the average value of y(t)
over t. For more information, refer to [5].

An illustration of this feature selection process is shown
in Fig. 1(a).

3) Target Onset Time Estimation: For each subject, the
target onset time was first estimated as their mean response
time before the button press, denoted by τ0. Then a modifi-
cation was made based on their EEG response. We looked
for a time window around τ0 that gave the largest ȳ value.
The onset of this window, τ̂ , was our new estimate of the
target onset time, as Equations (7) and (8) show.

τ̂ = arg max
τ

ȳ(τ) = arg max
τ

(
1
T

T∑

t=1

y(t, τ)), (7)

where
y(t, τ) =

∑

i

vixi(t, τ). (8)

Here the discriminating component ȳ is indexed by τ , which
is defined as 400ms before to 200ms after the mean response
time estimate of the stimulus onset τ0, with a step size of
50ms.
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(a) Feature selection by MIFS and LD
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Fig. 1. (a):Feature selection using MIFS and LD. A set of spatio-temporal
features was selected by the MIFS method, then these features were shifted
to the stimulus onset. After LD, y(t) was computed. (b): Feature selection
using LD only. EEG data from all sensors at the same time window were
the features for linear discrimination.

III. RESULTS

In our analysis, the first twenty trials were used as the
training data, with the rest used for testing (forty minus the
excluded trials).

A. Behavioral Response

During the task, the subjects responded as soon as they saw
a target clip. Their mean and standard deviation of response
time is shown in Table I. In each subject’s test trials, the
target onset time was first estimated to be the mean response
time (calculated from the training data) before the button
press. The dashed black line in Fig. 3 shows this estimate
for one subject, and the solid black line shows the time when
the button response happens. The estimation error for all six
subjects is presented in Fig. 5, as the dashed black curve
shows.

Sub1 Sub2 Sub3 Sub4 Sub5 Sub6
mean(ms) 842 705 836 710 877 921
std(ms) 156 94 86 130 240 144

TABLE I

THE SIX SUBJECTS’ MEAN AND STANDARD DEVIATION OF THEIR

RESPONSE TIME.

B. Target Onset Estimation Based on EEG

In the training data, the spatio-temporal EEG signals from
200ms to 850ms after the onset of each video clip were used
for extracting the features and discriminator training. We fur-
ther divided this 650ms window into 13 small time windows,
each 50ms long. As 60 scalp sensors were recorded, the size
of our feature pool was 60×13=780 spatio-temporal features.
The MIFS method was used to extract features from the
feature pool.

We next found the appropriate values for β and the feature
number. The linear discriminator’s Az value, computed using

ROC analysis [6], was used as the measure of the discrimi-
nation method’s performance. The result is shown in Fig. 2
(left).
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Fig. 2. Average ROC Az value as a function of β (left) and number of
features (right) of the six subjects. Left: The number of features was first
set to be 20. Right: β = 1.5.

From Fig. 2 we see that within a large range of β, the
discrimination method was robust and performed well. In
our implementation we set β = 1.5. Then we tested the
relationship between the feature number and the discrimina-
tion results. Again Az value from ROC analysis was used
as the measure. The result is shown in Fig. 2 (right). We
see improvement in the discrimination performance when
the number of features increases from one to twenty. When
the number of features is above 12, the performance re-
mains more-or-less constant. However as the performance
improves, the computational cost also increases. In our
implementation, we set the number of features to be 17.

Next a final discriminator was trained and the projection
from the original feature space to the new space was obtained
for each subject based on their training data using logistic re-
gression. Next the discriminating component ȳ values around
the original estimated stimulus onset time τ0 (from 400ms
before to 200ms after, in our analysis) were computed for
the test data, and the window that gave the optimal ȳ result
was our new estimation of the target onset, as Equations (7)
and (8) show. Fig. 3 shows one subject’s response-locked
single-trial discriminating component ȳ across time, we see
that the discriminating component matches the target onset
time well.

For a button press, once we locate the target onset, we can
estimate the response time to be the time period between the
target onset and the button press. Fig. 4 shows the estimated
response time as a function of the real response time for all
subjects’ test data.

Fig. 5 compares the result using our method with that of
only using the button response information. The left figure
shows the probability density function of the estimation
errors (in absolute values), and the right figure shows the
cumulative distribution of the estimation errors, both across
all six subjects. We see better estimates of the response
time when combining EEG and button response data. For
example, the estimation errors of 49% of the trials are smaller
than 50ms, and 75% are smaller than 100ms using our
method, while only 38% of all the trials are smaller than
50ms and 58% are smaller than 100ms using the behavioral
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Fig. 3. One subject’s response-locked single-trial discriminating component
ȳ across time. The solid black line shows the button response, the black
curve shows the actual stimulus onset time, the dashed black line represents
the estimate of stimulus onset time using the mean of the behavioral
response time from the training data, and the black dots show the peak
values of the discriminating component, which are our new estimates of the
stimulus onset.
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Fig. 4. The estimated response time versus the actual response time.

response as the estimate. In Fig. 5 (right) we also present the
result using LD directly, with all sixty channels being the
original feature space, and the time window set at 300ms,
400ms, 500ms, and 600ms, respectively. An illustration
of this process is shown in Fig. 1(b). We see that EEG
from 300ms time window is not a good indicator of the
target onset, but 400ms, 500ms and 600ms windows can all
improve the estimation performance. However, our method
using MIFS, which extracts spatio-temporal features, gives
the best estimate of the response time among all methods.

IV. CONCLUSION

In this paper we show that using MIFS and LD one can
estimate the visual stimulus onset time during an RSVP
task. Such methods have applications to brain computer
interfaces, specifically image triage applications which have
been termed “cortically coupled computer vision” [7].
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Fig. 5. Left: Probability density function of the estimation error (in
ms) across subjects for our method and using response time information
only. Right: Cumulative distribution of the estimation error. Cumulative
distribution shows the probability of being less than or equal to T as a
function of the estimation error.
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