
Bioinformatics Tools Enabling U-Statistics for Microarrays 
Knut M. Wittkowski, Asifa Haider, Ephraim Sehayek, Mayte Suárez-Fariñas, Maurizio Pellegrino, 

Alexandre Peshansky, Cameron Coffran, and Sanford Coker 

Abstract—It is rare that a single gene is sufficient to repre-
sent all aspects of genomic activity. Similarly, most common 
diseases cannot be explained by a mutations at a single locus. 
Since complex systems tend to be neither linear nor hierarchi-
cal in nature, but to have correlated components of unknown 
relative importance, the assumptions of traditional (paramet-
ric) multivariate statistical methods can rarely be justified on 
theoretical grounds. Empirical “validation” is not only prob-
lematic, but also time consuming. Here we demonstrates how 
bioinformatics tools, ranging from spreadsheets to grids, can 
enable u-statistics as a non-parametric alternative for scoring 
multivariate ordinal data. Applications are shown to improve 
assessment of genetic risk factors, quality control of microar-
rays and signal value estimation, scoring genomic profiles that 
best correlated with complex risk factors (cardiovascular dis-
eases), and complex responses to an intervention (treatment of 
psoriasis). 

I. INTRODUCTION

hen applying statistical methods to complex phenom-
ena, a single measure often does not reflect all rele-

vant aspects to be considered, so that several measures of in-
fluences and/or outcomes need to be considered. When the 
definite measure is not easily obtained, surrogate measures 
have to be evaluated, when the aim is to ameliorate a com-
plex phenomenon, a definitive measure may not even exist. 
Such problems may arise in many applications, although 
here we focus on SNP and gene expression microarrays. 

Most multivariate methods are based on the linear model, 
either explicitly, as in regression, factor, discriminant, and 
cluster analysis, or implicitly, as in neural networks. One 
scores each variable individually on a comparable scale, ei-
ther present/absent, low/intermediate/high, 1 to 10, or z-

transformation, and then defines a global score as a 
weighted average of these scores. Thus, data are interpreted 
as points in a Euclidian space. The number of dimensions is 
reduced by assuming them to be related by a function of 
known type (linear, exponential, etc.), allowing one to de-
termine for each point the Euclidian distance from a model 
hyperspace.
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While mathematically elegant and computationally effi-
cient, this approach has shortcomings when applied to real 
world data. Since neither the variables’ relative importance 
and correlation nor their functional relationship with the 
immeasurable latent factor ‘overall usefulness’, ‘efficacy’,
‘risk’, or ‘safety’ are typically known, construct validity [1] 
cannot be established on theoretical grounds. Instead, one 
needs to resort to empirical ‘validation’, choosing weights 
and functions to provide a reasonable fit with a ‘gold stan-
dard’ when applied to a sample. The diversity of scoring 
systems used attests to the subjective nature of this process. 

Even when the assumptions of the linear model regarding 
contribution to and relationship with the underlying im-
measurable factor are questionable, as in genetics and ge-
nomics, one can often assume that the contribution of a lo-
cus and the expression of a gene have at least an ‘orienta-
tion’, i.e., that, if all other conditions are held constant, pres-
ence of an additional mutation or increase in a gene’s ex-
pression is either ‘good’ or ‘bad’. The sign of this orienta-
tion can be known (hypothesis testing) or unknown (selec-
tion procedures). 

When faced with the risk of anal vs. vaginal contacts for 
sexual transmission of HIV [2], we presented a partial order-
ing for dealing with graded and ungraded variables, which 
allowed to incorporate knowledge that anal contacts carry 
more risk than vaginal contacts. Using the marginal likeli-
hood (MrgL) for this partial ordering, we developed a non-
parametric method to assess overall risk of HIV infection 
based on different types of behavior [2] and overall protec-
tive effect of barrier methods [3]. More recently, we applied 
this approach to assessing immunogenicity in cancer patients 
[4]. In short, one determines all rankings compatible with the 
partial ordering of the observed multivariate data and then 
computes a vector of scores as the average across these 
rankings. While this constituted the first objective approach 
to the analysis of multivariate ordinal data, because it did not 
rely on questionable assumptions, it lacked computational 
efficiency. The computational effort required could be pro-
hibitive even for moderately sized samples, let alone micro 
arrays with thousands of SNPs or genes. 
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Here, we present computational tools based on a closely 
related approach, u-statistics, which is computationally more 
efficient. With u-statistics [5], individual analyses can often 
be performed using spreadsheet software. Screening for op-
timal subsets of explanatory variables becomes feasible 
without the restrictions imposed by commonly used hierar-
chical strategies, although larger sample sizes and, even 
more importantly, larger numbers of variables require a va-
riety of bioinformatics strategies.  

U-statistics let to a family of simple tests. For uncensored 
data, this includes stratified rank tests with MrgL block 
weights [6] in general, for binary data the stratified 
MCNEMAR [7] test [8], for designs with two or more treat-
ments the WMW [9], KRUSKAL-WALLIS [10], and 
FRIEDMAN tests [11]. 

II. METHODS

A. U Statistics 
To develop a computationally efficient procedure to score 

multivariate ordinal data, we will not make any assumptions 
regarding the functional relationships between variables and 
the latent factor, except that each variable has an orientation, 
i.e., that if all other variables are held constant, an increase 
in this variable is either always ‘good’ or always ‘bad’. 

Each subject is compared to every other subject in a pair-
wise manner. For stratified designs, these comparisons will 
be made within each stratum (e.g., sex) only. When the 
genes of interest can be assumed to be correlated with the 
outcome, although not necessarily in a linear fashion, a par-
tial ordering [12] among the subjects is easily defined. If the 
second of two subjects has values at least as high among all 
variables, but higher in at least one variable, it is ‘superior’. 

For univariate data, all pairs of observations can be de-
cided, i.e., the resulting ordering is ‘çomplete’. For multi-
variate data, however, the ordering is only ‘partial’, in gen-
eral, because for some pairs of expression profiles the order 
may be undetermined. This is the case, for instance, if the 
expression of the first gene is higher in subject A, but that of 
the second gene is higher in subject B. 

Although a partial ordering does not guarantee that all 
pairs of subjects can be ordered, typically all subjects can be 
scored. With  as an indicator function, one assigns a score 
to each subject by counting the number of subjects being in-
ferior and subtracting the number of subjects being superior 
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The lattice on Fig. 1 provides a graphical representation 
of a partial ordering for multivariate data, showing the main 
features of u-statistics. (1) Pairs are linked if the order is in-
dependent of any (non-zero) weights that could be assigned 
to the different variables. (2) Adding a highly correlated 
variable is unlikely to have any effect on the lattice struc-
ture. Relative importance and correlation do not even need 
to be constant, but may depend on the other variables.  

Some applications may ask for specific partial orderings. 
Intervals, for instance, can only be ordered if they are dis-
joint. This leads to tests for censored data, including the tests 
of GEHAN [13, 14] for KAPLAN-MEIER curves. Drawing on a 
general theory, yields a family of statistical methods for a 
variety of situations, including signal value estimation. 
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Fig. 1.  Generation of a partial ordering from the blood cholesterol profiles 
(total cholesterol, cholestanol, camposterol, sitosterol) of seven patients. 
The profiles of patients 4, 6, and 9 are shown to the right of the data. The 
overlay above the individual profiles shows that both #4 and #9 have a 
higher profile than #6, but that the pair wise order between #4 and #9 can-
not be decided without making assumptions about the relative importance of 
Ttl and rSito (higher in #9) vs rChol and rCamp (higher in #4). The com-
plete partial ordering of the seven patients is depicted as a lattice, with lines 
indicating for which pairs the pairwise order can be decided. Patients #4, 
#6, and #9 are highlighted. 

When estimating the signal value for a particular gene on 
a microarray from a probe set of pairs of perfect (PM) and 
mis-matches (MM), several parametric and semi-parametric 
(‘robust’) methods have been proposed. An MM differs 
from a PM in that a single nucleotide is exchanged for its 
WATSON-CRICK complement to estimate non-specific bind-
ing. For genes that are not expressed, it is to be expected that 
mismatches have higher expression levels than perfect 
matches ( ,PM ,MMk kx x ) in 50% of all probe pairs. To allow 
for a linear model based on the logarithms of the differ-
ences, it has been suggested [15] to artificially decrease 
xk,MM of such probe pairs to a heuristically motivated level 
that ensures each difference to be positive. Of course, this 
decreases sensitivity for genes with low expression levels. 
When using u statistics, this bias can easily be overcome by 
employing the following partial ordering: 

,PM ,PM ,MM ,MMk k k k k kx x x x x x

From this, one selects the pair with a score of zero as the 
most ‘typical’, or, if necessary, the average or median 
among those closest to zero. As this guarantees ‘outliers’ to 
be excluded, the perceived need for taking logarithms is 
overcome. Even if one is to request that this estimate be 
non-negative, the resulting bias would be much lower than if 
one decreases xk,MM for each pair where ,PM ,MMk kx x .

B. Bioinformatics tools 
When HOEFFDING formalized this concept of u-statistics 

in 1948 [5], he allowed for multivariate observations, yet the 
potential of u-statistics for the analysis of multivariate data 
was not fully recognized, most likely because the computa-
tional effort to handle multivariate data was prohibitive, in 
general, and no algorithm was presented that would have al-
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lowed application of the method at least for small sample 
sizes. When GEHAN [13, 14], in 1965, applied u statistics to 
censored observations, he viewed them as univariate obser-
vations (xjk1: time under study), accompanied by an indicator 
of precision (xjk2 = 1: event, xjk2 = 0: censoring). 

Even with today’s computers, dealing with large quanti-
ties of complex data requires a combination of bioinformat-
ics strategies to develop computationally feasible tools. 

Methods: First and foremost, a method had to be found 
that was not np-hard. Moving from the MrgL principle to u 
statistics, while foregoing some second order information, 
formed the basis for developing algorithms that were com-
putationally efficient. 

Algorithms: The u-test, except for a missing variance 
term, had already been published in 1914, 33 years before 
MANN AND WHITNEY, by THOMAS DEUCHLER [16]. Unfor-
tunately, he presented his ideas more verbally, which made 
the results less accessible internationally. On the other hand, 
being a psychologist, he laid out a scheme for computations 
that, had it been more widely known, could potentially have 
given u-statistics an equal footing with methods based on 
the linear model. Based on his work, we developed algo-
rithms that, besides growing with the square of the number 
of subjects only, are easily implemented. 
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Fig. 2.  Computation of u-scores from a data set 
with the lattice structure of Fig. 1. The seven pro-
files are written both to the left and above a 
square array. Cells are filled according to the fol-
lowing rule: If the row profile is higher then the 
column profile, enter “1”, if it is smaller “-1”, 
otherwise “0”. Once all cells are filled, the u-
scores are obtained as the row sums of the array. 

For small samples, spreadsheets for different partial or-
derings can be downloaded from muStat.rockefeller.edu.
While clearly not the suggested implementation for routine 
applications, this demonstrates the ease and computational 
simplicity of the method. 

Language: The power of S (www.insightful.com) or R 
(www.r-project.org) as a bioinformatics tool lies in the ease 
with which statistical concepts can be expressed in the code. 
The downside of having a conceptually simple language is 
lack of computational efficiency. 

Implementation: To deal with a large number of subjects, 
several subroutines had to be written in C for computational 
efficiency.

Environment: ‘Screening’ thousands of expression pro-
files or epistatic sets to find the profile or set whose scores 
correlate best with the scores of a complex phenotype, can 
easily become impractical even on a fast computer or tradi-
tional ‘beowolf’ style cluster. Thus, we have formed a grid 
of PC work stations at The Rockefeller University Hospital. 
Data is uploaded to a Web front-end and then passed to a 
dispatcher that splits the job in dozens of work units, which 
are then sent to the work stations  to be analyzed in parallel. 

The grid is controlled by a Linux server acting that acts as 
dispatcher, verifies integrity of returned work units, and no-

tifies the requester when the job is done. This server runs an 
IBM DB2 database, secure Apache web server for a man-
agement console, and grid software from United Devices 
(www.ud.com). The client nodes consist of mixed x86 Mi-
crosoft Windows workstations running the United Devices 
agent, which processes the work unit at low priority when-
ever the workstation is idle. As the agent is centrally cus-
tomized to include an installation of the S-Plus application, 
it suffices for the work units to include the subset of the data 
to be analyzed and the S-Plus script to do the analysis. 

These tools and services, which for the first time make u-
statistics for multivariate data more widely available, can be 
accessed through muStat.rockefeller.edu

III. APPLICATIONS

A. Genetic Data from Trios (Case and Parents) 
In a study on the genetics of cardiovascular diseases [17], 

we are analyzing genetic data of hypercholesteremia patients 
and their parents. Each parent transmits one of two alleles at 
each locus and we would like to find loci where one form is 
transmitted more often to affected children than the other. 

In 1993, the sign test formula resurfaced in the Transmis-
sion Disequilibrium Test (TDT) [18] with pT and qT count-
ing the number of rare and common alleles, respectively, 
transmitted to a diseased child. Since then, the TDT has be-
come one of the most frequently used methods in genetics. 

Although non-parametric tests require fewer assumptions 
to be made than parametric tests, they still require that ob-
servations are independent. While each parent transmits its 
allele independently, the effects of the two alleles transmit-
ted to the same child are not independently observed. For a 
dominant locus, where one copy of the disease allele is suf-
ficient to cause the disease, heterozygous children of two 
heterozygous parents contribute evidence associating both 
alleles with the disease. If one simply counts alleles, the 
contribution of these children cancel each other out in the ef-
fect estimate, but inflate the variance term, reducing the 
power of the TDT to detect dominant diseases. 

Fig. 3 demonstrates how even exact tests, where all pos-
sible permutations of data need to be considered, can be im-
plemented in as few as four lines of native S language code. 

#--------------------------------------------------------------------------
# pP,   qP = number of PP,   PQ children of PP~PQ parents
# pX,xX,qX = number of PP,PQ,QQ children of PQ~PQ parents 
# pQ,   qQ = number of PQ,   QQ children of PQ~QQ parents
#--------------------------------------------------------------------------

O3  <- function(X1,X2,X3,Op) matrix(outer(outer(X1,X2,Op),X3,Op))
Est <- function(pP,qP,pX,qX,pQ,qQ) O3(pP-qP, (2^1)*(pX-qX),pQ-qQ,"+") # (1) 
Var <- function(pP,qP,pX,qX,pQ,qQ) O3(pP+qP, (2^2)*(pX+qX),pQ+qQ,"+") # (2) 

asymp.SMN.pvalue <- function(...)  1-pchisq( Est(...)^2/Var(...) ,1)  # (3) 

exact.SMN.pvalue <- function(pP,qP,pX,qX,pQ,qQ) {
 b0  <- function(n) if (n==0) 1 else dbinom(0:n, n, .5) 
 Dst <- function(nP,nX,nQ) O3(b0(nP),(2^0)*b0(nX),b0(nQ),"*") 
 tb <- cbind( 
  Dst(nP<-pP+qP, nX<-pX+qX, nQ<-pQ+qQ),  
  Est(0:nP,nP:0, 0:nX,nX:0, 0:nQ,nQ:0)^2) 
 return(1-sum(tb[tb[,2]<c(Est(pP,qP,pX,qX,pQ,qQ)^2),1])) } 

pT <- pP+(2*pX+xX)+pQ 
qT <- qP+(2*qX+xX)+qQ) 

asymp.TDT.pvalue <- function(pT,qT) asymp.SMN.pvalue(pT,qT, 0,0,0,0) 
exact.TDT.pvalue <- function(pT,qT) exact.SMN.pvalue(pT,qT, 0,0,0,0) 

Fig. 3.  S (also R) code for both the asymptotic and the exact versions of the 
stratified McNemar test and the TDT. The numbers in parentheses refer to 
the equation numbers in [8]. Eclipses (“…”) are part of the code. Note that 
asympt.TDT.pvalue(pT,qT) = 1-pchisq((pT-qT)^2/(pT+qT),df=1)
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B. Microarray Quality Control 
For univariate data, the median and the range between the 

25% and the 75% quantile are simple application of u-
statistics. Interestingly, they are conceptually much simpler 
than mean and standard deviation. Neither need exclusion of 
‘outliers’ to be considered nor needs a justifications to be 
sought for taking the squares (rather than, for instance, the 
absolute value) of an observation’s distance from the ‘cen-
ter’ (mean or median, respectively) to determine the devia-
tion from a model hyper plane. 

As one of our applications of u-statistics to microarrays, 
we have recently developed a tool, termed ‘Harshlight’ [19, 
20] to identify localized defects on the surface of microar-
rays by plotting the distance of each location’s log expres-
sion from the median across a set of chips. Since probes are 
randomly allocated on the chip, the shadowy circle on the 
left side of this u-filter image (Fig. 4b) is clearly an artifact, 
as are the isolated bright and dark spots close to the center 
and in the upper right corner. Fig. 4b demonstrates how 
Harshlight masks areas with localized defects, preventing 
them from interfering with subsequent analyses.  

Fig. 4: (a): partial upper 50% HuU95av2 chip pseudo-image. (b): median 
filtered image (3 chips). (c) HarshLight mask 

The justification for the choice of the arithmetic mean 
(average) as the measure of central tendency in linear mod-
els relies either on the law of large numbers and the central 
limit theorem or the assumption that the distribution of er-
rors is symmetrical, in general, and Gaussian, in particular. 
Here, neither assumption is easily justified. Fig. 5 demon-
strates that u-filtering causes less ‘ghosting’ than average fil-
tering. 

Fig. 5.  ‘bright spot’ in the top right corner of Fig. 4. Top: raw image from 
the same area of two chips showing gene expression from the same sample 
under two experimental conditions. Center: average filtering, bottom: me-
dian filtering 

C. Signal Value Estimation 
On Affymetrix microarrays, standardized activity is often 

computed as log(PM-MM), assuming multiplicative effects 
and additive noise, although fluid dynamics close to surfaces 
are known to be highly non-linear.  

When some genes are not expressed in the particular tis-
sue, MM and PM reflect random noise only, so that MM is 
expected to be larger than PM in 50% of all cases. The loga-
rithm of a negative number, however, is undefined, so for a 
formula based on the multiplicative model to be applicable, 
it has been argued that a probe with higher mis- than perfect 
match needs to be “background corrected”. Fig. 6 uses data 
from one of our psoriasis patients to demonstrate the bias 
created by this “correction”. By elevating all non-expressed 
genes to have signal value estimates between 1 and 100, it 
becomes virtually impossible to differentiate genes with 
‘true’ expression levels within this range from unexpressed 
genes that were merely ‘corrected’. 

Fig. 6.  MAS 5.0 bias for genes with low expression levels. 

From Fig. 7, using data from the commonly used ‘spike 
in’ dataset, we recognize an ‘old friend’ from statistical text-
books. As in many physical and biological systems, low 
concentrations are less reliably measured. Thus, variance in-
creases as the concentration decreases. MAS 5.0 ‘flattens’ 
the typical sigmoidal curve, but, as is to be expected, de-
creasing the variance for low concentrations comes at a 
price: a substantial bias. 

Fig. 7.   MAS 4.0, MAS 5.0, and U-statistics – bias vs. variance stabi-
lization.
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D. Complex Dependent Variables 
When trying to identify the factors that contribute to a 

complex phenomenon such as disease susceptibility or treat-
ment effect, we are faced with several problems. First, most 
complex phenomena lack a physical scale to be ‘measured’ 
in the traditional sense. Instead, we are faced with several 
surrogate variables. While it is often reasonable to assume 
that ‘more’ is ‘worse’ for each of them, it may not be easy to 
determine, how much ‘more’ is how much ‘worse’.  

Psoriasis, for instance, is a complex inflammatory disease 
characterized by hyperproliferation of keratinocytes and ac-
cumulation of activated T-cells in lesional skin. Treatments 
with various immunomodulatory or -suppressive agents 
(e.g., cyclosporine and methotrexate) have a therapeutic in-
dex, which precludes long-term treatment. Therefore, there 
is an ongoing interest in reducing toxicity through targeting 
cells mediating this disease more specifically. 

The PASI (Psoriasis Area Severity Index) and its variants, 
while frequently used, are crude measures at best. As a lin-
ear scoring systems, it is computed by scoring thickness, 
redness, and scaling on a scale from 0 (none) to 4 (striking) 
for four body areas independently. The sum of these scores 
is then multiplied by the size of the area (legs: 40%, trunk: 
30%, arms: 20%, head: 10%) and a score for the estimated 
percentage of skin involved from 0 (none) to 6 (90-100%). 
These weighted sums of individual scores are then added to 
an overall score. One characteristic of the linear model is 
that the difference between slight and no redness, for in-
stance, is assumed to have the same meaning as the differ-
ence between moderate and striking scaling. 

One of the advantages of u scores is that they are invari-
ant to scale transformations (logarithms, weights, etc.). 
Moreover, independency is not required. Adding highly cor-
related variables has little effect on the results. If the correla-
tion is ‘perfect’, an additional variable would not have af-
fected the results at all. Thus, u scores are perfectly suited 
for dealing with complex phenotypes, using the analytical 
tools described above. 

E. Genetic profiles and genomic pathways 
Once the effect has been scored, we can identify the set of 

independent variables that indicate the most likely genomic 
pathway or genetic constellation causing the complex phe-
notype. Activity profiles along a genomic pathway can be 
scored in essentially the same fashion as response profiles, 
although we are faced with two additional levels of com-
plexity. 

First, if the size of the subset of relevant variables among 
a total of n is unknown, 2n subsets need to be considered in 
an exhaustive search. Second, when scoring responses, it 
was reasonable to assume that we know, whether ‘more’ is 
‘better’ or ‘worse’. With genomic activity, this is typically 
not true. If treatment were to shift activity from one path-
ways to the other ‘alternative’, less effective pathway, ‘bet-
ter’ effects may be associated with less activity along the 

former pathway and more activity along the other. On the 
other hand, if pathways are synergistic, more activity on ei-
ther pathway may be ‘worse’. Thus, one may wish to allow 
for various combinations of signs (polarities) to be associ-
ated with each set of activity variables. To allow for this, for 
each pathway (subset of genes) with k components, all 2k 1

possible combinations of polarities are to be considered. 
When fitting linear models, variables are frequently added 

or dropped sequentially, e.g., by selecting the most ‘signifi-
cant’ variable in univariate analyses first, and then add more 
variables. As we have demonstrated [21], such strategies 
may not even come close to the optimum. Tree based ap-
proaches (CART [22]), are also sequential in nature. Sub-
jects are separated by the most significant variable first, and 
each subset is then separated by another subset-specific vari-
able. While this may result in easily communicated decision 
strategies, step-functions are not more easily justified on 
theoretical grounds than linear, exponential, or polynomial 
functions. Moving to random forests reduces the effect of 
outliers, but does not account for interactions. 

With u-statistics, non-parametric analysis of large sample 
sizes m (number of subjects) are feasible, because the com-
plexity is of order m2 only, compared to m! with the mar-
ginal likelihood principle. As there are “only” 30 000–
35 000 human genes, looking into at least all pairs of genes 
before start pruning is within reach, but conducting 109

bivariate analyses takes several hours, even on a grid with 
1000 PCs running at 2 GHz. Looking into sets of three 
genes among the subset of 1000 most “interesting” genes se-
lected from the uni- and bi-variate analyses requires a simi-
lar effort. 

Fig. 8.  Distribution of work units across a grid. Rows are work units by 
node (28 nodes) columns are time points (minutes). Depending on processor 
speed, concurrent applications, etc., the first node processed two work units, 
the second node five, and so on. 

With SNP arrays, the number of variables is larger (cur-
rently at 100K), but the knowledge about the sequence on 
the chromosome helps with reducing complexity.  
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However, the large amount of data created on the grid re-
garding evidence for epistatic interaction between diplotypes 
is not easily interpreted. Thus, after the results from the 
nodes are collected, we are using S-Plus to generate maps 
highlighting evidence for epistatic interaction (Fig. 9).

Fig. 9.  Epistasis “heatmap” for genetic information from mice, confirming 
known risk loci on chromosomes 10 and 19, but also providing evidence for 
loci on chromosomes 12 and 14, which may act primarily through interac-
tion with other risk loci. 

IV. DISCUSSION AND CONCLUSIONS

Multivariate ordinal data are often used to assess semi-
quantitative characteristics. Traditional approaches for com-
bining measures into a utility function require that relative 
weights be assigned to the measures. Typically, neither the 
transformation (linear, exponential, polynomial, …), nor the  
weights are easily justified, but results based on inappropri-
ate models easily may be misleading. 

A frequently used attempt to resolve this dilemma is to 
use a ‘training set’ to determine transformations and weights 
within this set, and then to check, if this scoring system is 
‘reasonably good’ when applied to an ‘evaluation set’. If 
not, one selects another family and/or optimality criterion 
and tries again. Of course, a set of functions and weights 
that seems to be ‘reasonably good’ in the evaluation set is 
not guaranteed to be optimal and the number of possible 
combinations of functions and weights is infinite. 

U statistics overcome the limitations of many approaches. 
No assumptions other then monotonicity need to be made. 
This, in turn, allows for u-statistics to drive a new generation 
of systems for decision support, in general, and predictive 
medicine, in particular. Because no empirical validation is 
needed, scoring systems can be created ad hoc, opening a 
range of applications, such as diagnostic support fine tuned 
to the particular characteristics of a patient and risk assess-
ments in homeland security, where intelligence suggests in-
dicators for imminent threats, but the relative importance of 
these indicators would only be known post mortem [23]. 
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