
 
 

  

Abstract— We present an overview of an integrated low-
power, lightweight, compact computing platform dedicated to 
addressing specific needs in sensing and actuation.  The 
architecture includes an adaptive computing electronic design 
(Chip) that supersedes the capabilities of present micro-
computing paradigms (micro-processors, micro-controllers, 
and DSPs) in the application domains of process identification, 
modeling, prediction, and real-time control. In particular, a 
domain of prominent applications is biological and medical 
measurements and stimulation.  
 

I. INTRODUCTION 
 
In measurement and stimulation in biological experiments, 
there is a staggering amount of data flow. It is envisioned 
that incoming data/signals is processed by this platform in 
real-time where the outputs may represent estimates of 
internal states of the process producing the data, predictions 
about the process's future states, and/or corresponding 
control commands. In this view, signals from the 
(biological) processes, e.g., measurement of a population of 
neuronal firing, measurement or stimulation of cell 
membrane potential sites, etc., are continuously supplied to 
the platform, which in turn performs on-line, instantaneous, 
learning, adaptation, then processing-- without the 
traditional coding /programming!  
 

Figure 1 depicts a 3-D micro force and force-rate sensor 
design based on a micro beam structure using the piezo-like 
PVDF material for sensing and actuation [1]. This 
sensor/actuator structure provides a 3-D force measurement, 
as well as actuations in the X, Y, and Z directions.  It design 
and working principle is detailed in ref. [1]. This structure is 
intended to be used in accurate 3-D positioning in biological 
systems, measuring signals as well as actuation or 
simulation. The motivating idea of the electronic platform is 
that one does not have a model of the probed tissue, one 
desires a learning module that can estimate a model from 
measurements and subsequently infer control commands for 
positioning of the probe as well as stimulation in response to 
measurements.  
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Fig.  1: 3-D PVDF-based Micro Force/Force-rate Sensor 

II. OVERVIEW OF THE DESIGN 

A. Why a special architecture: 
The designed adaptive system-on-chip is geared towards 
applications where either an accurate mathematical model of 
a process cannot be explicitly developed, or is not reliable, 
owing to the process' complexity and/or temporal and drift 
changes. In such cases, models may be "learned" from 
measurements and data, and subsequent decisions can be 
executed on-line. Our focus has been on a family of 
applications where the sensing, decision and actuation may 
eventually be integrated into a self-contained device or 
micro-system. We mention a prominent potential application 
domain: smart probes used in the medical and biological 
fields for biological cell measurement and stimulation where 
no reliable model exists and where decisions have to be 
made on-line. Applications in this domain include, drug 
injections and microsurgery.  In this application domain a 
huge amount of signals or data are generated, and would 
require massive processing for standard computing 
paradigms.  Similar challenging problems do exist in pattern 
matching, feature extraction, and data mining, to name a 
few. 
 

B.  How it works:  
The vision of self-learning computing engines (machines) is 
inspired by neurobiology. It, however, must be verified and 
tested by solid engineering methodologies [2, 3]. Several 
ideas, incorporated in this effort, are motivated from diverse 
disciplines including control systems, hardware analysis, 
VLSI, digital/analog circuits, adaptive learning systems, 
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neural networks, nonlinear signal processing, optimization 
and optimal control.  
 
As a by-product we present an engine capable of bypassing 
some of the conventional paradigms of computing, i.e., 
computing a given mathematical procedure or model via 
software programming phases, etc. In the critical 
applications of interest here, which include modeling, 
identification, prediction, and control from a stream of 
data/signals, presently, software can only compute off-line, 
and in a non-real time mode for relatively detailed models. 
The on-chip self-learning machine presented here would 
compute by virtue of receiving input-target data in the 
training mode and by letting the parameters (weights) settle 
to their steady-state values (within micro- to milli-seconds). 
Subsequently, the single chip machine would be ready to 
process new data on the fly limited only by the delay in its 
interconnect path from its input to its output.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  2: Conceptual View of the neural computational 
paradigm 

 
The on-line computation in real-time is achievable by way of 
a neural network architectural framework resulting in, 
among other things, solutions to challenging (NP-complete) 
problems in the general domain of optimization, 
identification, and classification.  
 
Some of the design features include: 
1) For basic implementation architecture, a forward 
architectural "neural" network, with optional feedback 
connections, was selected, given that these are the more 
vastly studied, and are rich enough as to be used for multiple 
applications. The forward network's processing and the 
learning module is analog, while the weight storage, control 
signals are digital given rise to a mixed mode circuit 
implementation.  
 
2) Although the initial design was outlined for 64-bit I/O to 
be compatible with modern processors, during the 
implementation phase it was reduced to a 16-input, 16-
output design. This was done as a certain number of pins 
were required to accommodate the intermediate internal 
nodes for testing, which may also be used to construct 
recurrent neural structures, and the supply of target signals 

during the learning phase. These requirements were further 
augmented by the addition of chip-level (global) control and 
program read/write signals.  
 
3) The I/O specification is flexible and can easily be 
reduced/expanded in our scalable design to inputs 
compatible with the available packages. The expansion, 
however, can be achieved by using several chips in cascade 
and parallel combinations.  
 
4) The chip operates in four different modes: (i) learn, (ii) 
(on-chip) store, (iii) program read/write, and (iv) process. 
 
• Learn: It activates the learning process based on the 

inputs and (desired) reference targets supplied by the 
application or the user.  

• Store: Once the user is satisfied with the performance of 
the network in the learning mode, the store mode saves 
the computed weights in on-chip static digital memory.  

• Program: This mode was added to give the chip the 
capability of weight read-out or write-in. The write-in 
signifies programming the synapses/weights for 
applications where the chip has already been trained. 

• Process: The chip is thus ready to be used in the 
process mode where the outputs are generated (i.e., 
computed) by the forward network.  

 
5) There is no speed/clock specification for the processing 
operations of the chip as the speed is set by the application 
and the architecture’s time-constant(s). In the “learn” mode, 
the speed is determined by the time the network takes to 
adapt itself to the input-target patterns. In digital 
implementations of neural networks, this stage takes the 
longest time, increasing with the complexity and number of 
training patterns. For the present chip, and based on our 
experience with IC chip implementations [3,6,10], the time it 
takes to converge to a solution can be around 100-1000 
micro secs-- in conservative 2-micron technology. Storing 
the weights takes longer than training, but similar to the 
learn mode, it is only executed once in any training session. 
The process mode consumes a delay determined by the 
largest analog path and the time constant parasitics (in 
micro-pico seconds) as all the computation/processing is 
executed instantaneously and in parallel. 
 
6) The (weight) storage memory was necessary to counter 
the problems of weight decay in generic analog 
implementations of analog neural implementations. On-chip 
digital memory was preferred as opposed to off-chip 
memory as it ensures self-contained operation and speed. 
After the learning phase, all the steady-state analog weights 
are converted to digital for block-wise storage using the on-
chip ADCs to ensure efficient resource utilization and 
shorter store mode execution. 
 
7) The resulting chip design would require no programming 
or coding. In addition to novel architectural designs, the 
hardware also performs the computational burden by 
selectively realizing programmability as on-chip self-
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configuring and self-learning modules. The resulting chip 
would operate on 1.5v power source and would consume 
less than 1.5 m Watt.  
 
8) The chip is mixed mode, mixed signal. We call it mixed 
mode in the sense that the learning phase is pure analog, 
while the store mode is analog-digital. This hierarchical 
view is also maintained in the layout of the chip and in 
routing interconnects as depicted in Figure 3 below. 
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Fig.  3: Layered architecture based on signal types: 
processing, memory, multiplexing controls 

 
The remaining part of the paper is organized as follows:  
Section 2 focuses on the architectural designs of the core 
building blocks, which include primarily the synaptic and 
control cells 

III. CHIP FLOORPLAN  
The Chip is designed to be highly modular. The concept of 
this modularity was infused into the design right from the 
conception phase and realized into a granular structure of the 
chip as the design progressed.  
 
The whole chip is composed of four cascaded building 
blocks and their interconnection. In addition, there are some 
global digital logic control elements (see Fig. 1). The first 
and the last of these blocks are routed to the padframe of the 
chip, as the input and the output layers of the neural engine.  

A. Structure of the Building Block 
The main building block of the chip comprises of a 16×18 
array of building cells. The first 16×1 cells are the digital 
cells, while the remaining 16×17 array is formed of synaptic 
cells. This array of synaptic cells on the output side is 
padded by another column of buffers for signals to be 
connected to other building blocks/padframe. This stage also 
includes difference amplifiers used for determination of 
error, i.e. difference between target inputs and block outputs for 
tuning the local weights.  

The Synaptic array can be decomposed into cascaded processing 
stages. Each processing stage is composed of 16 neurons built 

using (x17) synaptic cells and a sigmoid function. Current bus 
bars are used to collect output currents from each cell in a 
processing stage. These bus bars run horizontally and vertically 
for common row/column outputs. Separately designed sigmoid 
functions and CMOS linear resistors are used to convert these 
currents to voltages.  

B. The Synaptic Cell:  
Each synapse cell is composed of three analog Gilbert 
multipliers, a storage capacitor, a linear resistor, a set of 
transmission gates and 5 data flip-flops (for local memory).  

 
 
 

FIG.  4: Synapse Cell Structure 
 

In the learning stage, the processing multiplier M1 
multiplies an input signal xi and the synapse weight Wij, 
stored on the capacitor Ci and selected by setting p to high, 

to compute the output current yi. The back-propagating 
multiplier M2 multiplies the error signal ei with the weight 
Wij to calculate the feedback current component δi. The 
weight update multiplier M3 multiplies the input signal xi 
and error signal ei to determine the updated weight. The 
current-to-voltage conversion for this multiplier is done 
locally using a MOS capacitor. In the store mode, the locally 
stored weight value, using capacitor Ci, is converted to its 
digital representation. This conversion takes place in the 
corresponding digital cell. The converted weights are stored 
locally in the 5-bit memory. In the processing stage, the 
Multiplying DAC (MDAC) converts the stored digital bits to 
the equivalent weight representation. At this stage the 
polarity of signal p is adjusted so that the output of the 
MDAC is used as the local weight instead of the charge 
stored on the capacitor. The R signal is connected to reset all 
local memory of data flip-flops, enabling the local memory 
to be reset independent of digital cell operation. The signal 
Cki is the clock to the data flip-flops for storage of converted 
weights.  

C. The Digital Cell 
Each digital cell contains primarily an ADC. Sharing a 
common ADC for all the synaptic cells in a row reduces the 
number of ADCs required for conversion of weight to n . 
This configuration is capable of achieving satisfactory 
conversion time for all the weights.  See Fig.  4. 
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FIG.  5: Digital Cell Structure 
 
The selection of a weight in a row is controlled by chip level 
decoders, which executes in parallel for all rows in all the 
building blocks. The selected weight is compared with the 
MDAC output, this output is ORed with a signal C1, which 

can be used for weight override/clocking for the data-flip-
flops. The external signals C0-C4 control the clocking of the 
data flip-flops. The external signal C12 in conjunction with 
the EN_C12 signal connected to the transmission gate, 
provide this cell the capability to program the weights. The 
signal EN_C12 is generated by another set of chip-level 
decoders, which are supplied with the row/column selection 
during “programming.” 

 

IV. DESIGN AND LAYOUT OF SUB-CELLS 
All the components for this chip were custom-designed. All 
the component circuits were designed on Star-Hspice using 
BSIM Level-49 models supplied by SRC/UMC. Avant’s 
software SUE and METAWAVES was used for the schematic 
entry and waveform viewing, respectively. Initial layout of 
these sub-circuits was carried out in Tanner Tools but the 
verification and LVS were performed using Cadence Tools.  
Design details for some of these components are provided in 
[1,5]. In this paper we present our design of two more sub-

circuits that include the Multiplying MDAC [5] and the two-
stage data flip-flop. All components use Vcc at 1.5V. 
 
By design, the neural system-on-chip (nicknamed Micro-
learner) can accept and process signals with bandwidths 
greater than 100 MHz, this limit cannot be tested by the 
current setup. Therefore, after performing some initial 
validation of the chip operation, the platform for testing will 
be changed. The testing results for the chip will be reported 
in subsequent papers after its fabrication. 

 
 

FIG.  6: Depiction of the I/O and Control Bits for Micro-
Learner 
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