
 Symmetry Identification Using Partial Surface Matching
and Tilt Correction in 3D Brain Images 

Xin Liu, Celina Imielinska, Andrew Laine, E. Sander Connolly, Anthony L. D'Ambrosio

Abstract—We propose a novel method to automatically
compute the symmetry plane and correct the 3D orientation of
patient brain images.  Many images of the brain are clinically 
unreadable because of the misalignment of the patient’s head in
the scanner. We proposed an algorithm that represents the
brain volume as a re-parameterized surface point cloud where
each location has been parameterized by its elevation (latitude),
azimuth (longitude) and radius.  The removal of the interior 
contents of the brain makes this approach perform robustly in
the presence of the brain pathologies e.g. tumor, stroke and
bleed.  Thus, we decompose the symmetry plane computation
problem into a surface matching routine. The search for the
best matching surface is implemented in a multi-resolution
paradigm so as to decrease computational time considerably.
Spatial affine transform then is performed to rotate the 3D 
brain images and align them within the coordinate system of 
the scanner. The corrected brain volume is re-sliced such that
each planar image represents the brain at the same axial level.

I. INTRODUCTION
Human brain exhibits high level of bilateral symmetry,
although it is not perfectly symmetrical.  Detection and 
computation of symmetry plane in the brain has many
applications. Symmetry is used by clinical experts to detect
qualitatively asymmetric pattern indicating a wide range of
pathologies. Similarly computer aided systems are used to
quantify asymmetry and to automatically generate hints for
clinicians. Since neuroradiologists  use routinely symmetry
in their assessment of brain images, the misalignment of the
patient’s head in the scanner often leads to false clinical
interpretation of the patients scans. Likewise, for computer
program to correctly assess the pathological asymmetries it
is crucial that the neural scans are not tilted but correctly
aligned and oriented within the coordinate system of the
scanner. However, the tilt of the head that is observed in
practice quite often, not always can be controlled. It may be

caused by the immobility of the patient, inexperience of the
technician, or the imaging device itself. This makes
radiological slices of the brain images no longer homologous
within the same coronal or axial level. Thus, both assessment
either by a clinical expert and/or automatic system based on
symmetry analysis, like one similar to the Relative
Difference Map (RDM) quantification [3], require first the 
brain to be re-aligned within the scanner coordinate system.
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The paper is organized as follows. In section 2, we review
the existing methods. Our algorithm is described and 
discussed in section 3. Finally, the results are presented in
section 4 and we conclude our work and point out future
directions in section 5.

II. BACKGROUND
There are two major approaches to solve the problem of 

computing the symmetry plane in brain images. One is the 
2D based method, and the other is the volume based method.
The number of reported methods to compute brain symmetry,
in 3D volume is considerably smaller than those in 2D. The
planar method that is applied to 2D radiological brain slices,
may not always be extendable to 3D cases.  For example,
Brummer [4] proposes a method of using the Hough 
transform to identify cerebral inter-hemisphereic fissure.
Marais [9] extracts the fissure using snakes, and uses an 
orthogonal regression from a set of control points. The
method presented by Liu [7], estimates 2D mid-sagittal axis 
for each coronal or axial slice, and then computes a 3D plane
from set of these lines. Because these methods process brain 
volume slice-by-slice, the global symmetry of the whole
brain is not captured. In case where the head is tilted along 
the axis from posterior to anterior, a structure displayed in
the same axial slice will not reside in the same plane and the
symmetry axes computed independently in each slice will 
produce flawed final result. In 3D approaches, the plane that
maximizes the bilateral symmetry is captured. Prima et al [2]
computes local similarity measures between two sides of the
brain, using block matching procedure . Minovic proposed 
using principle axes to characterize symmetry plane [8], 
and , Sun [6] extended Minovic’s work and developed  an 
algorithm for finding symmetry planes of 3D objects using
extended Gaussian image representation. However both
methods only focused on synthesized object and may be
applicable if the clinical brain images have truncated field of 
view. Ardekani [5],  conducts iterative search on the unit
sphere, in order to find   the plane with respect to which the
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image exhibits maximum symmetry. These algorithms that
are based on local search reduce the amount of computation,
but fail on clinical brain images with gross asymmetries
often caused by pathological conditions.

Fig.1. We use surface normal to characterize the symmetry plane in 
volumetric neuro-images.

In this paper propose a novel method to automatically
compute the symmetry plane and correct the 3D orientation
of patient brain images. Similar to most existing 3D 
approaches, we define the mid-sagittal plane as the one
maximizes the similarity between two halves of the brain.
Therefore the problem decomposes into searching over a set
of possible planes to achieve the maximum of similarity
measure between the original image and its reflection. When
the 3-D volume is taken into account, the robustness is
difficult to achieve with global criteria that is affected by the
strong underling asymmetry. For most existing 3D methods,
apart from their sensitivity to pathological asymmetries,
another common drawback is the computational cost due to
the optimization scheme when searching through the set of 
possible planes.

Different from those 3D approaches, we choose the
surface normal to characterize the geometry of the symmetry
planes in 3D Euclidian space. See Fig.1.   Instead of using
intensities [2] or edges [7] as the characteristic features, the
similarity criterion is computed from the point cloud on the
surface of the brain., regardless the contents inside. We
therefore transform the 3D brain volume into a  thin  point
cloud  and each location on the surface has been 
parameterized by its elevation (latitude) , azimuth
(longitude) and radius. See Fig.2. The removal of the interior
contents of the brain makes this approach perform robustly
in the presence of the brain pathologies e.g. tumor, stroke
and bleed.

After re-parameterization, we decompose the symmetry
computation problem into a surface matching routine.  The 
search for the best matching surface patches is performed
utilizing a multi-resolution approach which decreases
computational time considerably.

Lastly, spatial affine transform is performed to rotate the
3D brain images and align them within the coordinate system
of the scanner. The corrected brain volume is re-sliced such
that each planar image represents the brain at the same axial 
level. The algorithm is 3-D and is insensitive to acquisition
noise, bias field and pathological asymmetries and the
incomplete field of view. In the following sections, we will 

detail the algorithm.

III. METHOD

A. Data representation
Let us assume that we have a single object (the head) of

interest in a volumetric dataset. We assume that patient scans
do not suffer from skull or skin lesion so that the surface of 
the head is complete and almost symmetrical. Given the
region of interest R within the image I, is the background 
cutoff that separates background from the head. We assign a 
very small value to since the background intensity in most
image modalities is close to zero. XR, the characteristic 
function can be found as follows:

1 ( , , ) : ( , , )
( , , )

0R

if x y z R I x y z
X x y z

otherwise
With the integration over the whole image I, the volume A is 
defined as  the 0th moment of R[1].

( , , )RI R
A X x y z dxdydz dxdydz

Then the centroid ( , , )C x y z is computed as[1] 

( )
R

/ ;x xdxdydz A

( )
R

y ydxdydz A/ ;

( )
R

/z zdxdydz A

Although it is possible that XR  will assign some inner
structures that present low intensities to be zero, but this
won’t affect the correct computation of the centroid. The 
technique extracts the points on the surface of the brain and 
maps them onto spherical polar coordinates. We define  to
be the azimuthal angle in the x y-plane from the x axis with
0 2 , and define  to be the polar angle from the z-axis
with / 2 / 2 , See Fig.2. We let the  be zero at the 
equator, and 0 / 2 for points from equator to the north
pole.  The algorithm allows rays { ( , )}r  emanating from
the centroid C to the boundary elements of XR. The 
intersections of the ray with the furthest boundary of the
region entail the sampled surface point cloud of the brain. 
Every point on such a point cloud {(x,y,z)} has been 
uniquely mapped to a triple set {( , ,r)} where the radius r is 
the distance  from a point to the centroid.  is also called
azimuth (longitude ) and elevation (latitude).
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Fig.2.We represent  the 3D brain  volume  into a   surface point cloud and
each location on the surface has been parameterized by its elevation 
(latitude), azimuth (longitude) and radius {( , ,r)}

B. Geometry of the Mid-Sagittal Plane(MSP)
Under Cartesian coordinates the mid-sagittal plane can be

represented as
aX+bY+cZ+d=0

where N= (a,b,c) is the normal vector that is perpendicular to
the mid-sagittal plane, and 2 2 2/d a b c is the
perpendicular distance of the plane from the origin. Each 
plane is characterized by a unique set of parameters (a, b,
c).Our aim is to find the triplet (a,b,c) of a symmetry plane 
with respect to which the image I exhibits maximum
“symmetry” measure.   Any parameter set (a,b,c) in
Cartesian coordinates  has unique counterpart in spherical
polar coordinates. This relationship is demonstrated as 
follows:

cos( ) cos( );
cos( )sin( );
sin( );

N N

N N

N

a R
b R
c R
d N C

Given a unit normal vector orthogonal to the symmetry
plane where R equals to 1 , the symmetry plane  can be 
characterized as N (a,b,c) =N( N, N) where 

( , ) ((cos( )cos( ),cos( )sin( ),sin( ))T
N N N N N N NN

Therefore, we are essentially seeking the normal vector
N( N, N) that characterizes the symmetry plane from our 
re-parameterized searching space until  the maximum of
similarity measure has been achieved. 

C. Sampling strategy and constrained search 
The rays are quantized by the discrete approximation to 

=k1 , =k2 , k1,k2 and the step size( , ) defines 
the sampling resolutions. See Fig.3. 

Our procedure is to select q points on the point cloud and 
evaluate the symmetry measure with respect to the opposing 
q points on the other side of the brain. The initial guess of the 
normal vector of the symmetry plane is N=0, N=0, a vector 
directing from the centroid  to the right ear. This initial guess 
has been iteratively refined until convergence. We define a 
surface patch S({ i},{ i})where its  spans between the 
range

 [ N-k1 , N+k1 ]and spans between [ N-k2 , N+k2 ].
In our primary study , we let each surface patch  spans 60 
degrees and  spans 120 degrees so that it forms a roughly
trapezoid shape. We set the sampling resolution to be =

=30.
This gives rise to a surface patch quantized by discrete 

points cloud in Fig.3. This initial surface patch S({ i},{ i})
should be centered around the first guess of the normal
vector.  We call this source surface patch (shown as the 
yellow cloud in Fig.3). 

The search for the target surface patch (shown as the blue 
cloud in Fig.3) SR ({ i},{ i}), is the procedure to find the 
best matching counterpart of S({ i},{ i})   on the other side 
of the brain. Starting from the opposite direction

( , )R R
,

R
=

N
, R N , the algorithm exams all the 

candidate surface patches by evaluating similarity measure
in the vicinity  about the vector ( R , R) within the
range ( , ),R Rp p p ,where ( , )  is the
sampling interval  between adjacent steps. Total 4p2

searching steps is conducted on 4p2 potential candidate 
surfaces within one iteration. SR({ i},{ i})should span the 
same surface area as S({ i},{ i}).The optimum finding of 
( R , R) enters into the next iteration. 

D. Similarity measure 
For each iteration, we are searching over 4p2 possible 

surfaces until we achieve the maximum of similarity
measure between the source surface patch S({ i},{ i})and
target surface patch SR({ i},{ i}). Correlation coefficient 
(CC) is chosen as the similarity measure. We consider all the 
radii of from surface S({ i},{ i}) as x1,x2,…,xn and all the 
radii from surface SR({ i},{ i}) as y1,y2…,y3. The 
correlation coefficient between S and SR is : 

1

2 2
1 1

1 ( )( )

1 ( ) (

n
i mean i meani

n n
i mean i meani i

x x y y
nCC

x x y y
n

)

1where 1 CC , The CC measures the strength of the 
linear  relationship between S and SR. Our technique seeks 
the highest absolute value of CC, the one closest to 1, which 
represents the strongest correlation between source and 
target surface patches. 

Fig.3.The algorithm extracts the head surface and re-parameterizes it into 
the point cloud. It then adopts multi-resolution scheme to find the best 
surface match between the source surface patch and the target surface path.
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E.  Multi-Resolution Scheme 
By adopting coarse resolution search at larger step 

intervals( , ), we achieve a rough estimation of the
normal vector N( N, N) at the initial runs.  At iteration 
evolves, we reduce the search space (p , p ) by applying
smaller p, while increase the sampling resolution by
shortening step size ( , ).Our initial search space spans 
p = p =400, with  sampling interval 2 degrees. We refine
the search resolution by the factor of 2 at each iteration, so 
that at the second run, the search space spans 20 degrees at 1 
degree interval, so on and so forth for subsequent iterations. 

The process is repeated at finer resolution proceeding 
from the optimum SRi found by the previous iteration. The 
final finding of the normal vector N( N, N) can be 
determined by the coefficients computed from the optimum
matching surfaces. 

F. Affine spatial transformation for tilt correction.

let Ro represent the rotation matrix as 
Ro = R R R =

cos( ) sin( ) 0
sin( ) cos( ) 0

0 0 1

cos( ) 0 sin( )
0 1 0

sin( ) 0 cos( )

1 0 0
0 cos( ) sin( )
0 sin( ) cos( )

where , , are the rotation angles with respect to the x, y
and z axes(yaw, roll, pitch), respectively.  In this case, 
 =0, , =N N

. Let T represent the translation matrix.
Vc = Vt ·Ro·T where  Vt  is the original input volume and Vc is 
the 3D corrected volume recentered at the centroid. The
corrected brain volume is re-sliced such that each planar
image represents the brain at the same axial level. We
implement cubic spline interpolation to achieve better 
smoothness and higher precision.

IV. RESULT
In Fig. 4, we illustrate the results on MRI volume images.

We applied our method to brain MRI images from 15 
patients selected from the pool of PACS (picture archiving 
and communication system) image database at Columbia
Presbyterian Hospital. The dataset is composed of a mixture
of T1-weighted MRI scans and T2-weighted MRI scans, half 
of which have big brain lesion and/or certain level of brain
shift. Each scan is of matrix dimension 256x256x124, with 
voxel dimension 1.01x1.01x2.0mm3.Therefore, a total of 15 
image volumes were generated. Out of 15, 14 cases were
judged to be highly accurate in terms of head tilt correction 
and re-interpolation of the brain along the z-axis.  So far, the 
results have only been subjectively assessed by a medical
trainee, and prospective study for further quantitative 
validations however, is currently being designed.  Initial 
results have shown that this method presents promising
potentials to precisely capture the symmetry plane regardless 
of the local pathological asymmetries and acquisition noise. 

V. CONCLUSION
This paper describes a new technique for the automatic

detection of the mid-sagittal plane in arbitrarily oriented 
three dimensional brain images and correction the 3D 
orientation of patient brain images in a cost effective way. 
The algorithm is independent of the imaging modality and it
is insensitive to incompleteness of the data. Unlike many of 
the classical symmetry-based methods, pathological 
asymmetries can severely degrade the computation of the 
symmetry plane, our method uses parameterized surface 
points to estimate the best similarity measure, and therefore 
it performs robustly in the presence of the
normal/pathological asymmetries inside the brain. The 
search evolves at each iteration in the parameter space from
the coarse level with lower resolution to the fine level with 
higher resolution. The use of multi-resolution paradigm
dramatically reduces the computational cost while still
produces satisfactory results. The future work involves more
rigorous quantitative evaluation study and examination of its 
sensitivities to errors in surface extraction. 

(a )                (b)                    (c)                (d) 
Fig.4. Results of MRI scan from 8 patients (out of 15 in total )(a) (c)
columns show original potentially misaligned MRI scans; (b)(d)
columns represent corresponding corrected MRI scans.

ACKNOWLEDGEMENT

The corresponding author would like to thank John
Kender from Computer Science Department, Columbia
University, for the helpful discussion. Authors would also
like to thank Anthony L. D'Ambrosio from neurosurgery
department for providing the clinical data.  The funding 
source of this project comes from Department of 

1059



neurosurgery, Columbia University. 

REFERENCES

[1]  Atam P.Dhawan, “Image registration”, book chapter in “Medical 
Image Analysis”, p254-p259, published by John Wiley & Sons, 
2003

[2] Sylvain Prima, Sébastien Ourselin, and Nicholas  Ayache, 
“Computation of the Mid-Sagittal Plane In 3-D Brain Images: IEEE 
transaction on medical imaging, vol.21, no.2, february 2002 

[3] Celina Imielinska, Xin Liu, Joel Rosiene et al., "Towards Objective 
Quantification of Perfusion-Weighted Computed Tomography in 
the Setting of Subarachnoid Hemorrhage: Quantification of 
Symmetry and Automated Delineation of Vascular Territories " 
,Journal of Academic Radiology ,2005 

[4]  M. E. Brummer, “Hough transform detection of the longitudinal 
fissure in tomographic head images,” IEEE Trans. Med. Imag., vol. 
10, pp. 74–81, Mar. 1991. 

[5]  B. A. Ardekani, J. Kershaw, M. Braun, and I. Kanno, “Automatic 
detection of the mid-sagittal plane in 3-D brain images,” IEEE Trans. 
Med Imag., vol. 16, pp. 947–952, Dec. 1997. 

[6] C. Sun and J. Sherrah, “3D symmetry detection using the extended 
gaussian image,” IEEE Trans. Pattern Anal. Machine Intell., vol. 19, 
pp. 164–168, Feb 1997 

[7] Y. Liu, R. T. Collins, and W. E. Rothfus, “Robust Midsagittal Plane 
Extraction from Normal and Pathological 3D Neuroradiology 
Images” IEEE Transactions on Medical Imaging, Vol. 20, No. 3, 
March, 2001, pp. 175 - 192. 

[8] P. Minovic , S. Ishikawa , K. Kato, “Symmetry Identification of a 
3-D Object Represented by Octree”, IEEE Transactions on Pattern 
Analysis and Machine Intelligence, v.15 n.5, p.507-514, May 1993 

[9] P. C. Marais, R. Guillemaud, M. Sakuma, A. Zisserman, and M. 
Brady,“Visualising cerebral asymmetry,” in Lecture Notes in 
Computer Science K. H. Höhne and R. Kikinis, Eds, Hamburg, 
Germany: Springer,Sept. 1996, vol 

1060


	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for export to IEEE PDF eXpress. May 2005. PaperCept.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


