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Abstract— In this paper we present a novel design for a non-
linear dynamic neural network to implement text-independent
speaker recognition without the benefit of exact voice signatures.
The dynamic properties between the input neuron and the out-
put neuron make use of a nonlinear high-order synaptic neural
model with memory of previous input signals. The dynamic
neural network is realized in the short-term-frequency long-
term-temporal domain. Informatics metric is used to overcome
the challenge of performing blind learning for the nonlinear
network. The goal of this study is not only to improve the
recognition performance but also to amplify the distinctiveness
among different speakers.

I. INTRODUCTION

NORMAL speech not only conveys information via
words, but also contains information such as the gender

and the identity of speakers. [1] and [2] provide a good
overview of technologies, applications, and challenges in
speaker recognition. Many studies have attempted to use
hidden Markov models (HMM) as a decoding algorithm
for speech recognition and speaker identification. However,
this technique assumes independence of consecutive feature
vectors, and is a short-windowed analytical technique, and
when compared to natural listener performance has infe-
rior classification ability. The basic challenge of speaker
recognition is that the exact desired ‘voice signature’ of
the incoming stimuli is inherently unknown to the speaker
recognizer. However, perhaps utterances recorded over a long
time would provide more attributes of voice signature than
can be captured in a short-time duration. In fact, [1], [2]
raise the possibility that higher level cues such as prosodic
features or other long-term signal measures may improve the
accuracy of speaker recognition.

As pointed out in [3] and [4], mammalian brains process
auditory signals in a two-dimensional way (both time and
frequency), and the receptive temporal field is extended up
to the order of hundreds of milliseconds. In [5], a time-
frequency deformation is proposed which employs scalar
weights as the connections between ‘neurons’. However this
and most models to date employ static architectures that
do not address the dynamic behavior of neurons from the
perspective of biophysiological reality.

In the present paper we address the issues of incorporating
higher level cues as well as biophysiological realism while
implementing the general computational purpose of speaker
recognition. The rest of this paper is organized as follows.
In section II, a simple review of high-order dynamic synapse
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(HODS) model is described. In section III, we build a
short-term-frequency (STF) long-term-temporal (LTT) two-
dimensional neural network by applying dynamic neurons
as computation units. The nonlinear temporal transformation
property is illustrated in subsection IV-A. The importance
of information theoretic metric on an unsupervised learning
scheme is described in subsection IV-B. Simulation results
are given in section V, where it is shown that the designed
model can offer a high classification rate along with increased
distinctiveness between speakers. Some highlighted conclu-
sions are discussed in section VI.

II. HIGH-ORDER DYNAMIC SYNAPSE MODEL

In [6] it is shown that considering the biophysical mech-
anisms of synapses such as the connections between neu-
rons in a biological neural network and the properties
of cell membranes results in an alternative approach to
understanding neural computation that warrants attention.
In [7], a high-order dynamic synapse model is developed
which describes a queue model composed of four serially
connected neurotransmitter pools at the pre-synapse. Static
or time-varying transfer rates describe the stationary or non-
stationary neurotransmitter vesicle transmitting events among
four neurotransmitter pools.

In [7] it is explained how neurotransmitter release events
are affected by facilitation and depression in a third-order
fashion between the pre-synapse and the post-synapse. This
model has been tested upon the experimental data recorded
at hippocampal Schaffer Collateral – CA1 cells. Most no-
tably, the HODS model realizes timing relations between the
current input spike and previous input spikes. With a set of
fixed parameters, one high-order dynamic synapse can be
considered to be a dynamic filter capable of yielding output
responses sensitive to various inputs and their particular
history. Thereby the current post-synaptic response y(tn) is
calculated in terms of previous pre-synaptic inputs {x(t)|t ≤
tn} as

y(tn) = f(x(t),w|t ≤ tn), (1)

where f(·) denotes the HODS nonlinear transformation
function, and the vector w represents all seven parameters
of one HODS model (for details, please refer to [7]). We
will impose this temporal property on our nonlinear dynamic
neural network design.

III. NONLINEAR DYNAMIC NEURAL NETWORK

Physiological studies of the mammalian auditory cortex
in [3], [4] have determined that neurons in the brain pro-
cess both time and frequency components of signals. This
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has motivated us to consider signal processing in a two-
dimensional way, instead of single-dimension analysis (either
time or frequency). Moreover, as declared in [3], [4], the
receptive field for auditory signals can be extended up to the
order of hundreds of milliseconds. Keeping this in mind, we
designed a scheme to retrieve high-level, time-independent
acoustic information that analyzes the signal over ‘all’ time,
i.e., we designed a functional transformation to convert the
temporal input into a multi-dimensional output function in
time.

We choose to use a short-term-frequency long-term-
temporal neural network, and as such, output of the network
is a function of the input data over a period of time.
Each acoustic signal is first divided into a series of non-
overlapping frames, each having a duration of Tf . Tf is
normally chosen on the order of tens of milliseconds. Due to
the large variability of acoustic signals, it is fairly typical in
acoustic signal processing to perform some form of feature
extraction to reduce the signal variability and to decrease the
degrees of freedom using a method such as Mel frequency
cepstral coefficient (MFCC) computation. MFCC is similar
to the cochlea of the human ear in that it performs a quasi-
frequency analysis. MFCC acts on each separate frame in a
method known as short-term spectrum calculation.

Based on MFCC features, a nonlinear dynamic neural
network is employed to explore the timing course at each
quefrency channel (in general, inverted log-frequency trans-
form is defined as quefrency). The suggested design is
quite different from typical artificial neural networks as the
design addresses neural dynamics. Despite the exact details
of biological learning procedures being unknown, dynamic
connections are stated to be existent between neurons in a
biological neural network. By applying nonlinear dynamic
neural functions, we are taking a step towards investigating
the processes of biological learning.

A two-dimension network structure is built using high-
order dynamic synapses as computation units. The purpose of
the structure is to predict long-term spectrum and to extract
further temporal features over consecutive frames. The pre-
synapses and their corresponding post-synapses are aligned
in the quefrency coordinate to represent the Q-by-1 feature
vector associated with short-term spectrum computation. One
pre- and post- synaptic pair is designated to denote the time
coordinate. We define the temporal memory being M . From
the nonlinear function eq. (1), the output yq(n) at quefrency
q is

yq(n) = f(xq(n),wq), q ∈ [1, Q] (2)

where xq(n) := [xq(n), xq(n−1), . . . , xq(n−M +1)]T , and
[·]T represents vector transpose. Thus the output effectively
embodies temporal traits by integrating previous temporal
features. An overview data flow is shown in Figure 1.
Q short-term input vectors are first interleaved. At each
quefrency, one nonlinear dynamic neural model accounts for
timing variation over M frames. Having experienced the
dynamic network, the output data is interleaved back so that
it can be used to yield further spectrum demonstration.
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Fig. 1. An overview of data flow process

This design is essentially different from general artificial
neural networks, which generate a weighted summation
output from activated responses of previous layers. Instead,
our proposed neural network yields the nonlinear response
from previous layers individually at each path (quefrency).
This separability allows us to train the proposed dynamic
network in parallel as described in subsection IV-B. Fur-
thermore, relying on the HODS model in [7], we find that
the output response is actually a quasi-exponential function
with memory of previous events. This nonlinear function
consists of several exponential or quasi-exponential functions
to represent dynamics, instead of the scalar weights generally
employed in time delay neural networks.

IV. TEXT-INDEPENDENT SPEAKER IDENTIFIER BASED

ON INFORMATION THEORETIC METRIC

A. Nonlinear temporal transformation

A hallmark of human learning is the ability to classify
acoustic signals. We can distinguish utterances by activating
temporal dynamic neural structures according to prosodic
cues of specific speakers. The biophysical mechanisms un-
derlying this ability are unknown, but generally, classifica-
tion ability can be described as a filtering process: signals
associated with one speaker are ‘amplified’ whereas signals
associated with another speaker are ‘attenuated’. As a result,
signals from different speakers can be separated farther away
such as illustrated in Figure 2, which displays nonlinear
transformation from x feature space to another y feature
space.

The goal of our design is to establish a selective asso-
ciation such that dynamic neural models can adaptively ap-
proach the feature space of one specific speaker. To highlight
the decoding selectivity, a conceptual example of a decoding
filter is shown in Figure 3. Two different input signals x1 and
x2 with distance 5.6 are provided on the left. By training the
filter f1 to ideally benefit the selectivity of the first signal, the
filtered responses for two signals in y space are illustrated
on the right with distance 59.7. As a result of decoding
selectivity, the output response y1 is comparatively amplified
while the output response y2 is comparatively attenuated
with the increased distance. So the filtered outputs are easier
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to discriminate than the original signals. This is a simple
example of how the decoding filter acts on the original data.
Speaker identification is a more sophisticated case.
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Fig. 2. Nonlinear transformation illustration
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Fig. 3. An example of a decoding filter in continuous time

B. Information theoretic metric for unsupervised learning

In order to discriminate speaker attributes, we aim to
investigate high-level acoustic features, i.e., we focus more
on how the person speaks and focus less on what is exactly
said. Utterances indicate a speaker’s identity information
at various levels. On the other hand, the ‘exact’ voice
signatures of different speakers are generally not predefined.
Our proposed speaker detector possesses two kinds of blind
processes. First, semi-supervised learning exists between
speakers as no exact voice transcripts are known for each
speaker though the signals are labelled to speakers. Second,
unsupervised learning of acoustic signals exists inside each
speaker’s training, i.e., to design a text-independent speaker
recognizer, we propose to separate high-level acoustic signals
(speaker identity information) from low-level acoustic signals
(texts). We will draw upon information theoretic metric to
seek the resolution of above blindness and to train the
dynamic temporal neural network to selectively corroborate
the discriminability between speakers.

Specifically, supposing the ‘real’ voice signature s(n) is
reflected over M frames, we assume high-level acoustic
signals coherent and the divergent component v(n) nonco-
herent. We also take the assumption that high-level acoustic
information is independent of and additive with low-level
information at quefrencies. Ignoring q for simplicity, the
nonlinear function (2) is approximately expressed as

y(n) = f(s(n) + v(n),w)
= f ′(s(n),w) + f ′(v(n), (s(n),v(n)),w),

where s(n),v(n) are vectors over memory M , f ′(s(n),w)
denotes all orders of nonlinear responses from stimuli s(n),
and f ′(v(n), (s(n),v(n)),w) represents all orders of non-
linear responses from stimuli v(n)) and from interact part
(s(n),v(n)).

To approach the purpose of extracting speaker’s com-
mon features out of acoustic signals, we turn toward
augmenting the item f ′(s(n),w) associated with inhibit-
ing the item f ′(v(n), (s(n),v(n)),w). Shannon’s distor-
tion rate theory [8][p. 337] states that the decoding and
classification performance is optimized if the capacity
log(1 + f ′2(s(n),w)/f ′2(v(n), (s(n),v(n)),w)) is maxi-
mized, where log(·) is a monotonic function that does not
modify the metric variation trend. With the assumptions in
the last paragraph, we suppose f ′2(s(n),w) is coherent and
ergodic, and converges to the mean value of the output
response; we assume f ′2(v(n), (s(n),v(n)),w) is nonco-
herent and zero-mean. Therefore we derive the following
from the capacity definition as the cost metric for training

Υ(y) = log
(E[y(n)])2

σ2
y

, (3)

where E[·] denotes the statistical mean, and σ2 the variance.
From the perspective that speaker’s identity information

is contained in each acoustic signal, the temporal dynamic
neural network ensembles the high-level signal over a long
term, thus factoring out and normalizing various levels of
variability. Relying on the cost metric in eq. (3), each
speaker’s voice signature can be extracted and other low-level
acoustic variation is suppressed. As the dynamic network
is nonlinear, optimizing parameters is difficult using gradi-
ent descent algorithms. We resort to Nelder Mead simplex
method to find the optimal/suboptimal solutions.

What’s more, when comparing the proposed design with
the traditional MFCC high pass filter (HPF) that detects
speaker’s pitch information and then identifies speakers, we
discover three weaknesses for MFCC HPF: i) the threshold
between low quefrency and high quefrency is not adaptive;
ii) the high quefrency may not be able to completely repre-
sent high-level acoustic information; iii) the current output
response can be sensitive to its particular temporal history.
Hence, a dynamic decoding filter with temporal memory is a
better scheme to adaptively adjust pass band and stop band.

V. SIMULATION RESULTS

In the simulation section, we use TIMIT data and 40
western-dialect speakers to train the designed networks. For
each speaker, seven sentences are randomly selected for train-
ing and the rest for testing. The speech data is processed by
a silence-removing algorithm followed by the application of
nonlinear dynamic neural networks. The training procedure
is described as maximizing the cost in eq. (3) via Nelder
Mead algorithm searching parameter vector w. Tf = 10 ms,
M = 30, Q = 20. After about 110 epoches, the training pro-
cedure converges. Upon converging, the nonlinear decoding
filter expressed by w, the output pattern, and the variance
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divergent from the pattern are obtained at each quefrency.
One strength stemming from the proposed cost metric is that
only one speaker’s data is used to train this speaker’s dynamic
neural network. Thus other speakers’ data is not needed
during training, which dramatically reduces the training time
and complexity.

During the testing stage, the resting data from all speakers
are mixed to test every trained neural network. Assume the
output response is Gaussian distributed (if it is not Gaussian
distributed, central limit theory [8][pp. 191-192] proves it
is approximately Gaussian over M frames). In [9], it claims
that Gaussian distribution belongs to exponential families. As
a result, the designed quasi-exponential neural network and
the data that the network is modelling analogously inside the
same exponential families. Maximal log-likelihood is applied
to operate on testing unknown data. The correct identification
rate is about 92-97.5%. This is consistent with the fact that
each network has learnt features of its own speaker. Hence,
each network with respect to its speaker can be analogously
viewed as an independent basis of the speaker’s feature space.
All networks therefore construct a set of independent bases
to span the whole data space.

In addition, we discover that maximizing the cost metric
in eq. (3) will remove the common correlation between
speakers while strengthening the specific voice signature of
each speaker. One example is given in Figure 4. Figure 4 (a)
shows MFCC patterns of two male speakers within western
dialect. For simplicity, only one-dimension (1-D) temporal
space is plotted. After employing dynamic network filtering,
their temporal outputs are presented in Figure 4 (b). It can
be seen that common features between them are suppressed
but their distinct features are preserved.
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Fig. 4. (a) MFCC patterns before dynamic network filtering; (b) MFCC
patterns after dynamic network filtering

To make the above description more understandable, the
following three equations are defined to demonstrate the
decoding gains of dynamic networks

G1 =
||μya − μyb ||
||μxa − μxb || , (4)

where a, b represent any two speakers, μ indicates expecta-
tion. The higher this gain value, the farther the two speakers’
voice signatures and the less possible that the data can be
classified into a wrong speaker. Secondly,

G2 = log
Υ(y)
Υ(x)

, (5)

TABLE I

COMPARISON RESULTS USING HODS NETWORKS

Before Network After Network Decoding gain

||μa − μb|| 1.4500 2.5100 G1 = 1.7310

Υ(dB) −10.8306 3.7293 G2 = 14.5653

I(a, b) 0.8810 0.5630 G3 = −0.3180

where Υ(x) is defined similar as in eq. (3). The larger this
gain value, the less rate distortion is lost. Thirdly,

G3 = I(ya, yb) − I(xa, xb), (6)

where I(ya, yb) denotes the cross mutual information after
applying dynamic networks, so I(xa, xb) represents the cross
value before applying networks. This gain indicates the
correlation removal between speakers. The smaller this gain
value, the more discriminative the two speakers.

The averaged decoding gains after using the dynamic
networks are given in Table 1. They obviously show temporal
dynamic neural networks can effectively further distinguish
speakers, not only can just identify them.

VI. CONCLUSION

Auditory signal processing in the mammalian cortex pro-
vides us with some heuristics to explore the speaker recogni-
tion task. We contributed original work to develop a nonlinear
dynamic neural network using high-order dynamic synapses
in STF LTT feature space. Information theoretic metric is
applied for unsupervised learning. The proposed model can
selectively amplify signals associated with one speaker and
attenuate signals associated with another speaker, resulting
in a potential improvement on the recognition performance.
Simulation results prove that the proposed model can sig-
nificantly distinguish differences between speakers even if
originally they have a high correlation between each other.
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