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Abstract—Cluster analysis has become a standard part of
gene expression analysis. In this paper, we propose a novel
semi-supervised approach that offers the same flexibility as
that of a hierarchical clustering. Yet it utilizes, along with
the experimental gene expression data, common biological
information about different genes that is being complied at
various public, web accessible databases. We argue that such an
approach is inherently superior than the standard unsupervised
approach of grouping genes based on expression data alone.
It is shown that our biologically supervised methods produce

better clustering results than the corresponding unsupervised
methods as judged by the distance from the model temporal
profiles.
R-codes of the clustering algorithm are available from the

authors upon request.

I. INTRODUCTION

We introduce a novel hierarchical clustering algorithm for

grouping genes based on gene expression data. Unlike other

approaches to clustering gene expressions, it is not an un-

supervised method. We characterize it as “semi-supervised”

since it uses a “training set” of annotated genes whose

functional information is known. This approach produces a

hierarchy of clusters in either an agglomerative or a divisive

manner. However, at each stage of cluster formation, the

algorithm uses a distance measure based on the gene expres-

sion profiles plus the biological information obtainable from

the public GO databases. It is argued that such an approach is

inherently superior than the standard unsupervised approach

in producing biologically meaningful clusters.

A. Motivation
Cluster analysis is routinely used in analyzing gene ex-

pression data. Typically, a standard hierarchical clustering

algorithm such as the UPGMA with correlation similarity

measure is used. A post hoc analysis is done to identify

each cluster by associated biological functions often using a

handful of genes with known biological behavior. As pointed

out in earlier works [1], [2], [3], the result of such an

approach is sensitive to the choice of the clustering algorithm

used.

B. Related work
Numerous approaches of cluster validations are available

in the literature. As for example, Figure of Merit (FOM)
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measures [4] such as the silhouette width [5] or the homo-

geneity index [6] can be used to evaluate the external (visual)

characteristics of the results of a clustering algorithm. Indices

to measure the stability of a clustering algorithm were

introduced in [3], [7]. Analysis of biological validity of

clustering results through computation of distance from a

model profile was presented in [3]. A resampling based

validity scheme was proposed in [8]. Use of GO databases

in validating the results of an unsupervised method are

available in a number of recent papers including [9], [10],

[11], [12]. Utilization of GO terms to improve biological

relevance of clustering results is considered in [13]. Semi-

supervised clustering methodologies for general applications

are presented in [14], [15].

The next section introduces the presented clustering al-

gorithms. Experimental validation of the proposed method

along with description of utilized data sets of gene expres-

sion, and experimental results are described in Section 3.

Conclusions and discussion are presented in Section 4.

II. BIOLOGICALLY SUPERVISED CLUSTERING

Let G = {x1,x2, . . . ,xl} be the set of all gene ex-
pressions resulting from a microarray experiment, such that

xg ∈ Rp, for some p. Let also F1, F2, . . . , Fm be not

necessarily disjoint sets of labels corresponding to genes with

similar functions. We propose such semi-supervised cluster-

ing algorithms that utilize this prior functional information

and promote clusters of functionally similar genes.

A. BSC algorithms
The Biologically Supervised Clustering (BSC) algorithms

are novel clustering techniques that take set of gene expres-

sions G and set of functional classes F =
⋃m

k=1 Fk as

the input and produce a hierarchy of clusters as a result.

The crucial part of the presented method is the distance

metric that combines measurements (gene expressions) and

prior information (functional sets). The distance D(A,B)
between two clusters A and B is composed of two parts:

1) the mathematical distance dM (A,B) computed with the
gene expressions, 2) and biological distance dB(A,B) that
is based on the prior biological functional information:

D(A,B) = (1 − λ)dM (A,B) + λdB(A,B), (1)

where λ ∈ [0, 1] is a user-specified coefficient, representing
the relative importance of the components. Consider two

genes with expression levels xg and xg′ , g �= g′ belonging

to two different clusters. The mathematical distance is the

distance between each pair of gene expressions, that belong
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to different clusters, normalized by the number of elements

in the clusters:

dM (A,B) =
1

n(A)n(B)

∑

xg∈A, x
g′∈B

d(xg,xg′), (2)

where d(·, ·) is a distance (or dissimilarity) measure, and n(·)
is the cardinality of a set. On the other hand, the biological

distance is found by counting all such pairs of genes whose

expressions belong to different statistical clusters and labels

do not belong to the same functional set, normalized by

the number of genes in each statistical cluster for whose

functional information is known. Thus for

n(A ∩ F)n(B ∩ F) > 0:

dB(A,B) =
1

n(A ∩ F)n(B ∩ F)
·

·
∑

g∈A∩F, g′∈B∩F

(1 − I(g, g′ ∈ Fk, for some k)),
(3)

where I(·) is an indicator of the logical value. We assume
that for n(A ∩ F)n(B ∩ F) = 0, dB(A,B) = 0.
We consider two versions of the BSC algorithm. It could

be either agglomerative (BSAC) or divisive (BSDC) hierar-

chical clustering. In the first case, at the initial level all genes

form their own clusters. At each subsequent levels two least

distant clusters are combined to form one bigger cluster. A

hierarchy of clusters is produced as the result, as in case of

hierarchical clustering (UPGMA).

On the other hand, the BSDC algorithm starts with one

large cluster that contains all genes. At each subsequent stage

the cluster that contains two most distant observations is

selected for division. The observation that has the largest

average dissimilarity from all other observations in the

cluster forms so-called splinter group. All genes with smaller
average distance to the splitter group than to the old cluster

are assigned to the new cluster, as in the case of the Divisive

Analysis method (DIANA).

B. Selection of parameters
The performance of a BSC algorithm depends on the value

of λ. This parameter controls the degree of influence of

the prior functional information in the clustering process.

Note that for λ = 0, the functional information is not
considered for constructing clusters and the BSC algorithm

behaves as UPGMA or DIANA. With λ = 1 only prior
biological information is utilized for cluster construction, and

λ between 0 and 1 causes combination of gene expressions

and functional information with various weights. The optimal

value of λ should reflect the degree of confidence in the gene

expression measurements, prior biological information and

how well the annotated genes represent all genes in the study.

Because the this confidence is difficult to assess, we assume

that the optimal λ corresponds to the optimal performance

of a BSC algorithm.

We propose to apply the BSC algorithm with several

values of λ and select the value that yields the optimal

effectiveness in terms of some performance measure. An

example of such measure along with experimental results

are provided in the next section.

III. EXPERIMENTAL RESULTS

We illustrate our clustering methods on two very different

data sets, described below.

A. Data Sets
1) Yeast time course cDNA data: As an illustrative data

set, we use the classical data set collected by Chu et al. and

presented in [16]. This data set records expression profiles

during sporulation of Saccharomyces cerevisiae at seven time
points. The original data set was filtered using the same

criterion as in [16]. For our illustration, we look at a further

subset of 513 genes (ORF’s to be correct) that were overall

positively expressed (i.e.,
∑

time log expression ratio > 0).
Functional classes were obtained us-

ing the web-based GO mining tool at

http://mips.gsf.de/proj/funcatDB/search main frame.html.

Overall, 503 of the 513 genes were annotated into

the following seventeen functional classes: metabolism

(138), energy (27), cell cycle and DNA processing

(152), transcription (50), protein synthesis (10), protein

fate (72), protein with binding function or cofactor

requirement (81), protein activity regulation (16), transport

(63), cell communication (12), defense (36), interaction

with environment (33), cell fate (17), development (41),

biogenesis (77), cell differentiation (82).

2) Normal versus breast carcinoma, SAGE data: This
data set comes from the study presented in [17]. We illustrate

our methods using the expression profiles of 258 genes

(SAGE tags) that were judged to be significantly differen-

tially expressed at 5% significance level between four normal

and seven ductal carcinoma in situ (DCIS) samples.

For constructing the functional classes, we have used

a publicly available web-tool called Amigo (http://www.

godatabase.org/cgi-bin/amigo/go.cgi) . We were able to an-

notate 113 SAGE tags into the following eleven functional

classes based on their primary biological functions. They

were as follows: cell organization and biogenesis (24),

transport (7), cell communication (15), cellular metabolism

(48), cell cycle (6), cell motility (7), immune response (7),

cell death(7), development (5), cell differentiation (5), cell

proliferation (5) where the numbers in parentheses were the

numbers of SAGE tags in a class. There were 23 genes that

belonged to more than one functional class.

B. Performance Measures
The BSC algorithms were implemented with the R pro-

gramming language. The performance of the proposed clus-

tering method was assessed with the yeast and SAGE data

sets described in Sec. III-A. The distance from model pro-

files, validating biological relevance of resulting clusters, was

utilized as performance measure. The following dissimilarity

measure:

d(xg,xg′) =
1 − r(xg,xg′)

2
(4)
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was utilized in (2), where r(·, ·) is the correlation coefficient.

The distance from model profiles, proposed in [3], mea-

sures biological validity of statistical clusters. Model profiles

are created from a small group of hand-selected genes that

were available from the original studies and classified into

biological classes as deemed appropriate by the biologists for

that particular experiment. The gene expressions averaged

over each class create the model profiles. The averaged gene

expressions are calculated for each resulting cluster, and the

distance between so created profile and the model profile is

computed:

dist = min
π

K∑

i=1

d(x̄m
i , x̄π(i)), (5)

where K is the number of clusters and the minimum is taken

over all permutations π of integers {1, 2, . . . ,K}, and x̄
m
i is

the (average) model profile for the i-th cluster. The rational

behind using a permutation was to match the levels of the

clusters with those for the model profiles. The expression (4)

was also used here as distance metric. Smaller dist indicates

that studied clusters are more similar to the model profiles

thus more biologically valid.

The distance from model profiles (5) was computed for

the yeast data set. In the original paper Chu et al., [16]

determined on the basis of first induction of expression that

seven is the right number of clusters to be used for grouping

genes for this data set. In addition they created a model

expression profile by using certain handpicked genes in each

class. We use the same number of clusters (K = 7) and the
benchmark model profile.

It may be worth pointing out that the biological informa-

tion used in [16] is different from the functional information

from GO used in BSC. Thus, (5) serves as a true validation

measure.

The resulting distances from the model profiles computed

for the yeast data set, clustered with BSAC and BSDC

algorithms are presented in Figs. 1 and 2, respectively.

In the case of the BSAC algorithm (Fig. 1), the minima

(and hence the optimal values) within the grid of selected λ,

occur at 0.5, 0.7 and 0.8. The distance from model profiles

produced by the BSDC algorithm (Fig.2) shows greater

improvement of the performance measure for λ = 0.4.

Next, a similar performance measure was computed for

the SAGE data set. The model profiles were composed of a

small collection of genes reported in [17] (Fig. 5 in reference

[17]), whose deregulation is altered in the ductal carcinoma

in situ stage of breast cancer. Three model clusters were

created from the following functional classes: Cell cycle (3

genes), Apoptosis (3), and Cytokines (4). Due to the small

number of model clusters and genes in them, we took one

more cluster, e.g.,K = 4 with the hope of representing genes
that may be involved with “other” types of cellular activities.

The distance measure (5) was modified so that the smallest

distance between model profiles and K − 1 cluster profiles
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Fig. 1. Distance from model profiles, computed for the yeast data set
with set II of functional classes, for various values of λ, with the BSAC
algorithm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

lambda
D

is
ta

n
ce

 f
ro

m
 m

o
d
e
l p

ro
fil

e
s

Fig. 2. Distance from model profiles, computed for the yeast data set
with set II of functional classes, for various values of λ, with the BSDC
algorithm
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Fig. 3. Distance from model profiles, computed for the SAGE data set,
for various values of λ, with the BSAC algorithm

is measured:

dist∗ = min
π

K−1∑

i=1

d(x̄m
i , x̄π(i)), (6)

where π denotes the same permutations as in (5). The values

of dist∗, computed for the SAGE data with BSAC and BSDC

methods, for several values of λ are presented in Figs. 3 and

4. For this data set, we notice substantial gain in using

our BSC algorithms compared to the standard UPGMA and

Diana (which correspond to λ = 0). Once again, BSDC (Fig.
4) seems to produce slightly better results than BSAC (Fig.

3) for the optimal λ of 0.8 for both clustering methods.
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Fig. 4. Distance from model profiles, computed for the SAGE data set,
for various values of λ, with the BSDC algorithm

IV. DISCUSSION

The BSC algorithms presented here are novel clustering

methods which are based on biological as well as the

experimental information. These are also novel additions to

the collection of tools that attempt to utilize the growing GO

databases. As a clustering algorithm, it maintains the full

generality of hierarchical clustering producing a dendrogram

or hierarchy of clusters which can be utilized at any specified

level (height). It can use a general dissimilarity measure just

like the standard hierarchical clustering for the expression

component of the “distance”. Even though we have used

the average distance in computing the mathematical distance

between sets, clearly, other choices such as the minimum

(single linkage) or the maximum (complete linkage) are

possible.

The algorithm can be implemented in either an agglom-

erative or a divisive fashion. Thus the standard clustering

methods UPGMA and Diana can be obtained as special cases

of this method.

Although we were motivated by gene expression data,

the basic idea is more general. It can be easily adapted

to other biological (e.g., proteomics) and non-biological

applications where one is interested in clustering but there

is additional relevant information. This information could

be a like a training set in a classification problem with

the following important distinctions. The informative groups

could be overlapping and the cluster levels do not have to

correspond to or be restricted to the levels in that information

set.
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