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Abstract— We consider computationally reconstructing gene
regulatory networks on top of the binary abstraction of gene
expression state information. Unlike previous Boolean network
approaches, the proposed method does not handle noisy gene
expression values directly. Instead, two-valued ‘“hidden state”
information is derived from gene expression profiles using a
robust statistical technique, and a gene interaction network is
inferred from this hidden state information. In particular, we
exploit Espresso, a well-known 2-level Boolean logic optimizer
in order to determine the core network structure. The resulting
gene interaction networks can be viewed as dynamic Bayesian
networks, which have key advantages over more conventional
Bayesian networks in terms of biological phenomena that
can be represented. The authors tested the proposed method
with a time-course gene expression data set from microarray
experiments on anti-cancer drugs doxorubicin and paclitaxel.
A gene interaction network was produced by our method, and
the identified genes were validated with a public annotation
database. The experimental studies we conducted suggest that
the proposed method inspired by engineering systems can be
a very effective tool to decipher complex gene interactions in
living systems.

I. INTRODUCTION

Now equipped with well-established methods to sequence
genes in many organisms including humans, we want to un-
derstand the interactions of individual genes as a next step. In
particular, computational reconstruction of gene interaction
networks has received much attention since the invention of
the DNA microarray technology. Despite some controversial
issues involved [1], it remains true that the DNA microarray
technology delivers unprecedented throughput when we want
to monitor the expression of a whole genome simultaneously.
Large-scale gene expression data sets obtained from DNA
microarray experiments provide invaluable information for
gene network inference algorithms that typically require a
large amount of empirical data.

The problem of reverse-engineering a complex system
from its input and output behavior, as is the case in gene
network reconstruction, has already been extensively studied
in electrical engineering. In particular, approaches to model
gene networks using Boolean networks [2], [3] bear great
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similarities to digital circuit synthesis. As will be seen
shortly, the network connectivity information in Boolean
networks can easily be obtained by Espresso, a well-known
2-level Boolean logic minimizer [4], even though this fact
remained unnoticed in previous work on Boolean networks.

Although Boolean network approaches can be computa-
tionally more efficient than alternatives and are therefore
scalable to a larger gene network, the impact of Boolean
methods on the bioinformatics field has been somewhat lim-
ited. A possible reason is that representing gene expression
levels by only two states can be oversimplification of contin-
uous biological signals. Another reason may come from the
deterministic nature of most Boolean approaches. Biological
data can often be noisy, and statistical methods may provide
a more robust solution. To alleviate the second problem,
probabilistic Boolean networks have been proposed [5], [6],
but they still suffer from the first issue — oversimplification
of gene expression profiles.

Given the mature technologies and tools for processing
binary information in engineering, we claim that a binary
abstraction of biological information remains to be a very
appealing technique for inferring gene interaction networks,
assuming that we use binary abstractions in a right context.
Most previous Boolean approaches start with a binary repre-
sentation of gene expression profiles: if a gene expression
level is lower than a threshold, the gene expression is
considered 0 or OFF; otherwise the expression is regarded
as 1 or ON. As previously stated, this bifurcation of gene
expression values tends to be overly simplistic and prone
to error. Just as Boolean logic minimizers are not designed
for noisy electrical signals obtained directly from analog
sensors, gene expression profiles (they are noisy biological
signals from biosensors) are often not suitable for binary
representations and processing.

In this paper, we introduce a new computational method
to build gene interaction networks from time-course gene
expression data. This method distinguishes two types of
states associated with gene expression. The observed state
of a gene is its empirically observed expression value. The
hidden state of a gene represents its biological state that
caused the observed state. The hidden state information is
deduced from the observed state information by a statistical
approach to handle noise in expression values. It is the hidden
state information that is represented and processed in its
binary form. The proposed method analyzes the hidden state
information and finally produces gene interaction networks.

The introduction of hidden states resembles the state defi-
nitions in conventional hidden Markov models (HMMs) [7].
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There have been approaches that use HMMs to analyze time-
course microarray data sets [8], [9], [10], but these methods
report clusters of related genes instead of gene interaction
networks, mostly due to the limited representational power
of HMMs. Our method constructs a network that is more
similar to dynamic Bayesian networks (DBNs) [11], [12],
which includes HMMs and Kalman filters [13] as special
cases. The core of building DBNs from time-course data
is to learn the structure of a two-slice temporal network
(2TN), which represents the causal relationships of variables
between two adjacent time slices assuming the first-order
Markov models. We use Espresso, the well-known 2-level
Boolean logic minimizer, in order to learn the 2TN structure.
If we assume higher-order Markov models, we can also
employ multi-level logic minimization techniques.

The organization of this paper is as follows. Section II
describes the details of extracting the hidden state informa-
tion from the observed state information and learning the
2TN structure using a Boolean logic synthesis technique. In
Section III, we test the proposed method with a biological
data set and present the result. Section IV concludes this
paper with future work.

II. METHOD

The input to the proposed method is a time-course gene
expression data set obtained by microarray experiments, and
the output is a directed (possibly cyclic) graph representing
interactions of the genes involved in the microarray experi-
ment. The method consists of the following major steps:

1) Extracting the hidden state information and construct
a hidden state table (Section II-B);

2) Simplifying the hidden state table by removing non-
informative genes (Section II-C);

3) Determining and optimizing gene dependency infor-
mation (Section II-E); and

4) Representing the dependency information by a 2-slice
temporal network and converting it into a gene inter-
action network (Section II-F).

The definitions and assumptions made are presented in

Sections II-A and II-D, respectively.

A. Definitions

Suppose that we are monitoring the expression of N genes
G =1{91,92,-..,98} in M samples S = {s1,89,...,8m}
taken from two distinct cell lines. Assume that samples
S1 = {s1,82,...,8n} are taken from one cell line and
S2 = {Sm+1, Sm+2,--.,Spm + from the other.

Assuming that we measure gene expression at K different
time points T = {t1,ta,...,tx }, a snapshot is a real-valued
matrix denoted by D, € RM*M_ where element (Dg)ij
represents the expression value of gene g; € G in sample
s; € S measured at time ¢t € 7. That is, a snapshot is a
matrix of gene expression values measured at a certain fixed
time for all genes and samples. A collection of snapshots,
{D1,Ds,...,Dp}, is called a time-course expression data
set. Fig. 1 informally shows a snapshot and a time-course
expression data set.

Microarray \ \
“Snapshot” \ |

Gene Selline Control Snapshot
under test

ﬁe

(b) Time-course expression data

B I
Subject

(a) Snapshot

Fig. 1. Definitions: snapshot and time-course expression data.

The observed state of gene g; in sample s; at time #j, is
denoted by 0,5 = (Dg)i; € R. The hidden state of gene
g; at time t, is denoted by h;, € {DE, EE}, where DE
and E'E represent “Differentially Expressed” and “Equally
Expressed” over different cell lines, respectively.

The hidden state table is a matrix of hidden states and
is denoted by H, where the element (H);; in row ¢ and
column k equals h;x, the hidden state of gene g; € G at
time ¢, € T. As will be explained shortly, every hidden state
table is associated with some statistic to represent statistical
confidence of the table entries.

B. Extracting hidden state table

The first step of the proposed method is to extract hidden
state information from a time-series microarray data set
and build a hidden state table. We construct one column
of the table per snapshot. For each ¢, € G and t; €
T, we do a hypothesis testing to determine if gene g; is
differentially expressed between cell line samples S; and
So. More formally, we use the general statistical model of
a gene expression value [14] to represent the observed state
0ijk, Namely

Oijk = Qi + bikl{Sj S S1} + €3k (1)

where I{-} is the indicator random variable', €, is random
errors with zero mean. That is, the mean expression values
of gene g; in two distinct cell lines at time ¢ are a;x + bk
and a;j, respectively. Then, for each gene, we test the null
hypothesis Ho : b;; = 0 against the alternative hypothesis
‘H1 : b, # 0 with significance level «. Finally, the hidden
state h; is a binary variable defined as

b = | PE=1,
*=\ EE20,

if Hy is rejected;
otherwise.

2

Example 1: Assume that the elements of two sets
{3.0,3.1,3.1,3.2,3.0} and {0.0,0.1,0.2,0.1,0.1} are the
expression values of gene g; € G measured at time ¢, € T
from 5 cancer patients and 5 normal ones, respectively. We
show how to compute h;i, the hidden state of gene g; at time

' {true} = 1;I{false} = 0.
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tx. Assume that the two populations from which the samples
were drawn follow the normal distribution. We can use the
t-test [15] to test if the two group means are statistically
different. Let Y,, v, and M, denote the sample mean, the
sample variance, and the sample size of the first group, and
Y,, vy and M, for the second. Then, the ¢-statistic is

Y,-Y, 3.08—-0.1
t— b _ =60.829 (3)

Vg Vb 0.007 0.005
\/MQJFMb \/T 55

and the degrees of freedom v is

(32 + 38)?

o {(fﬂl)Q/(Ma—1)+(%)2/(Mb_1)J =8 4

Assuming that we use significance level o = 0.05,

t > t(aj2) = 2.3060 (5)

where t(q/2,,) i8 the critical value of the ¢-distribution with
significance level a = 0.05 and v = 8 from the (two-tailed)
t-distribution table [15]. Since ¢ > t(4/2,,), We reject the
null hypothesis Hj that the two group means are the same.
Therefore, h;;, = DE. ([l

When calculating h;; for many genes, we need a cor-
rection of significance level o for multiple comparisons
[16], thus ensuring that too many false positives are not
declared. For instance, if the genome-wide significance level
a = 0.05 for N = 1000 genes, the (two-sided) gene-
specific significance level a* = «/(2N) = 0.000025 by
the Bonferroni correction method [15].

The use of the t¢-statistic and the Bonferroni adjustment
above was just to make explanation simple and clear. More
sophisticated methods than have been proposed especially
for the analysis of microarray data [14], [16]. For the
experiments presented in Section III, we used the significance
analysis of microarray (SAM) statistic [17] and the false
discovery rate (FDR) [18] as the test statistic and the multiple
comparison correction method, respectively, instead of the ¢-
statistic and Bonferroni-corrected .

C. Simplifying hidden state table

After the hidden state table is completed, we remove
from it those rows that do not have any DE entry. We are
not interested in the genes whose expression levels do not
change between cell lines. In other words, we consider only
those genes in set G' = G — {¢;|Vtx € T,hy = EE}.
However, we continue to use G in place of G’ for notational
convenience.

D. Assumption: stationary Markov process

Having determined the gene variables and their states, the
next step is to specify the dependencies among the variables.
To make computation feasible, two reasonable assumptions
are typically made [11]. First, we assume that state changes
result from a stationary process, where changes in the states
are governed by laws that do not themselves over time.

Second, we make a Markov assumption that the current
states depend only a finite history of previous states. In

g1 EFE EFE DE EFE
g2 DE DE EE EE
gs || EE | DE | EE | DE
(a) Hidden state table
oo [ wa [ @s J| of | 23 [ o5 |
EFE DE EE EFE DE DE
EFE DE DE DE EFE EFE
DE EFE EFE EE EFE DE

(b) State transitions

Fig. 2. An example of the hidden state table and state transitions.

particular, we assume the first-order Makrov process, where
the current states depend only on the previous states and not
on any earlier states. Thus, h;i, the hidden state of gene g;
at time tj, depends only on the hidden states at time ¢;_1.

E. Learning and optimizing dependency information

Based upon the Markov assumption made above, we can
represent each hidden state h;; as a function of the hidden
states in the previous time slice, namely,

7hi(k—1)7 . ) .

(6)
Since we also assume a stationary process, we can drop k
from (6), which becomes

hit = fir (h1(k—1)s ha(k—1)s ha(k—1)s - - -

71.2'7"') (7)

where Boolean variables acj and x; represent h;; for arbi-
trary k and k—1, respectively. If the hidden state table has K
columns, then we have (K — 1) input/output pairs for each
fi-

Example 2: Fig. 2 shows an example of the hidden state
table and the state transition information implied. |

The task is then to determine each f; from this input/output
information appearing in the hidden state table. The dif-
ference between our method and others becomes salient
in this process. Other methods use gene expression values
(directly or after rounding them to “on” or “off”’) as the
input/output variables of the function. Then, the function
itself is estimated by techniques such as (non)parametric re-
gression, covariance matrix estimation, maximum likelihood
estimation, and information-theoretic approaches. In contrast,
the proposed method uses the binary hidden state information
as the input/output variables and then synthesize each f; as
a 2-level Boolean logic function.

To synthesize f;, we first represent each column of the
hidden state table as a minterm. For a Boolean function, a
minterm is defined as a product term in which each input
variable appears exactly once either in its complemented
or uncomplemented form. Thus, if we denote by M} the
minterm for column % in the hidden state table, then

l’j = fz ($1,$2,x3,...

N
My, = [ [ @iI{hir = DE} + 7iI{hy = EE}).  (8)
i=1
As a Boolean function, each f; can be represented by a sum
of minterms. Thus, we can represent =}~ as a sum of (K'—1)
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Fig. 3. Minimizing dependency information by Espresso.

minterms:
K—1 L
af=>" (MiI{hix1) = DE} + MyI{hyj41) = EE}) .
i=1
)
Example 3: In the hidden state table in Fig. 2(a),
My = ZTizoTs
Mz = ZTizox3
Mg = X1T273
by (8). Then, by (9), we can obtain
o = M+ Mat M
= T1T2T3 + T1%2X3 + T1T27T3,
and variables z3 and 3 can be derived similarly. O

The function synthesized by (9) can further be simplified
by 2-level Boolean logic minimization techniques. In this
work, we use Espresso, a widely used 2-level logic opti-
mizer. Espresso takes as input a two-level representation
of a Boolean function and produces a minimal equivalent
representation. The details on Espresso are beyond the scope
of this paper but can be found in [4].

Example 4: The logic equation derived in Example 3 can
be minimized by Espresso. Fig. 3(b) shows the Espresso
output where .1, .o, .p, and .e specify the number of
input variables, the number of output functions, the number
of product terms, and the end of output, respectively. The
lines before .e but after the .p line correspond to the
encoded product terms, which can be decoded into the form
shown in Fig. 3(c). O

The process of minimizing function f; also serves the role
of avoiding overly complex dependencies of a gene on others,
because it is well known that typically a gene is regulated
by or regulates only a small number of other genes. This is
also common in some other methods. For instance, some
regression approaches employed penalized regression that
penalizes overly complicated dependence structures among
variables.

F. Deriving gene interaction networks

After the logic minimization step, the dependency in-
formation among the genes are represented by a directed
bipartite graph called a 2-slice temporal network (2TN). Let
X = {x1,29,...,ox} and X+ = {af,2F,... 2]} The
2TN is a directed bipartite graph (V, E) with vertex set V =
X UXT and edge set E = {(z,2")|z € X,2" € X, 2T
is a function of z or Z}. By using different edges, we can

()
(o)
()

Fig. 4. The 2-slice temporal network and the gene interaction network
derived from Fig. 3 (the vertical bars on edges represent negation).

(a) 2TN (b) Gene network

distinguish the dependency of T on either x or Z. Finally,
we can derive a gene interaction network from the 2TN by
merging x; and :cj' vertices and labeling the merged vertex
by gi.

This network can represent both positive and negative
regulations as well as feedback loops, which frequently
occur in biological processes but cannot be represented by
conventional Bayesian networks.

Example 5: Fig. 4(a) shows the 2-slice temporal network
derived from the dependency information listed in Fig. 3(c).
Positive and negative regulations are denoted by edge —
and edge -, respectively. For instance, gene g3 negatively
regulates gene g» and positively regulates gene g;. Also
note that genes g» and g3 have positive and negative self-
regulation, respectively. ]

ITI. EXPERIMENTAL RESULTS
A. The time-course expression data used

We measured the expression of 10,305 human genes at 10
time points (0, 0.5, 1, 1.5, 2, 3, 4, 5, 6, and 8 hours) from
20 patients resistant to anti-cancer drugs doxorubicin and
paclitaxel. For comparison, we also measured the expression
of the same genes at the same set of time points from 20
patients sensitive to the same anti-cancer drugs. We used mi-
croarrays manufactured by MacroGen Incorporated (Seoul,
Korea). The scanned images were processed by GenePix
software from Molecular Devices Corporation (Sunnyvale,
California) and were saved in the GPR format. More details
on the experiments will be published elsewhere.

The Bioconductor packages [19] for the R language
were utilized to read the GPR files and preprocess them.
In particular, we used the Edwards method [20] for cor-
recting background intensities and then normalized the
data sets by functions normalizeWithinArrays () and
normalizeBetweenArrays () in the limma package.
We considered only those genes that showed at least a 2-
fold change in their expression level.

B. Derivation of a gene interaction network

To extract the hidden state information and construct a
hidden state table as described in Section II-B, the SAM
package [17] was employed with the FDR value of 107°.
SAM uses a modified ¢-test statistic with sample-label per-
mutations to evaluate statistical significance. The SAM statis-
tic was chosen because it does not make strong parametric
assumptions and does not require any complex estimation
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l D “ Gene Description

g1 TNFRSFI0B | tumor necrosis factor receptor superfamily
g2 GADI glutamate decarboxylase 1
g3 PYGL phosphorylase, glycogen
g4 ASIP agouti signaling protein
gs TXNRDI thioredoxin reductase 1
(a) Identified genes
+
[ex [ @2 [ w5 [ oa [ o5 [ af [ of [ of [ of [ = |
EE EE | DE | DE | EE EE EE EE DE | EE
EE EE EE DE | EE EE DE | EE DE | EE
EE DE | EE DE | EE EE EE EE EE EE
EE EE EE EE EE DE EE EE EE EE
DE EE EE EE EE EE DE | EE DE | EE
EE DE | EE DE | EE EE EE EE DE | EE
EE EE EE DE | EE EE DE | EE DE | EE
EE DE | EE DE | EE EE EE | DE EE | DE
EE EE | DE EE | DE EE DE | EE EE EE

(b) State transitions

Fig. 5. The genes that were found differentially expressed and their
transition information.

N
(&) o)

(b) Negative regulation

(a) Positive regulation

Fig. 6. Gene interaction networks derived from the transition information
in Fig. 5(b).

procedures [14], [17]. The FDR is used by SAM as an
alternative to controlling the false positive rate in handling
multiple comparisons.

Fig. 5(a) lists the genes and their descriptions identified by
this procedure, and Fig. 5(b) shows the transition information
of these genes. This transition information was simplified by
Espresso and was converted into a 2-slice temporal network,
which was finally transformed to the gene networks shown
in Fig. 6.

Excluding preprocessing, the entire procedure to infer
the gene network took less than an hour on a reasonably-
equipped workstation with the majority of the running time
spent on the SAM procedure.

C. Expression profiles of identified genes

Fig. 7 shows the time-course expression profiles of the
individual genes listed in Fig. 5(a). In each plot, a red circle
(a blue square) represents the average expression value of
the corresponding gene at a time point across all patients
who are resistant (sensitive) to the drug. Centered on each
circle or square is a vertical error bar showing the range
of a standard deviation. The expression of genes GADI
and TXNRDI was higher in the samples resistant to the
drug whereas the expression of genes PYGL and ASIP was
lower in those samples. The difference was more subtle for

TNFRSF10B

GAD1

HE EEEN PYGL
HEEEEEEEEN /sr

[ i BT TXNRD1

Fig. 8. The heat map representing the expression of the identified genes
(red = high level of gene expression, green = low level of gene expression).

gene TNFRSF10B, which might not be detected by a simple
discretization method such as thresholding.

The heat map shown in Fig. 8 also contrasts the expression
of the five genes between resistant and sensitive samples.
The rows and columns of the map correspond to genes
and time points, respectively. Just as in a typical heat
map for microarray data visualization, each red or green
box represents gene expression levels that are high or low,
respectively. The values shown here are the median values
over the 20 samples in each cell line.

D. Validation with Gene Ontology

In order to further validate the findings, we utilized
database Gene Ontology (GO) [21]. GO consists of three
collections of controlled vocabularies that describe molec-
ular functions, biological processes, or cellular components
related to gene activities. By identifying common GO terms
that annotate a certain set of genes, researchers can informat-
ically validate the coherency of the genes in the set, assuming
that the sharing is statistically significant. Generally, the
hypergeometric distribution is used to calculate the p-value of
a GO term shared by certain genes, and this p-value is usually
corrected to reflect the multiple comparison issue involved in
computation [22]. We found that term GO:0006091 (genera-
tion of precursor metabolites and energy) annotates the genes
listed in Fig. 5(a) with the corrected p-value of 0.00136.
These genes are related to an energy pathway, namely the
formation from simpler components of precursor metabolites,
substances from which energy is derived, and the processes
involved in the liberation of energy from these substances.

IV. CONCLUSIONS

We described a method to reverse-engineer gene interac-
tion networks from empirical time-course gene expression
data. The proposed method utilizes a robust statistical tech-
nique that can capture the transition information of gene
expression levels in a binary form. We then explained how
to use Espresso, a Boolean logic optimizer to simplify
this binary transition information and derive gene networks
from it. According to the preliminary experimental study we
performed, we expect that the proposed method can be a
promising tool to computationally infer the interactions of
genes in complex biological systems.

We can extend the technique proposed in this paper by
relaxing the two assumptions on the underlying biological
model — a stationary first-order Markov process. Instead
of 2-slice temporal networks, we can use n-slice temporal
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Fig. 7. The expression profiles for the genes listed in Fig. 5(a).

networks by assuming (n — 1)™ order Markov process
and determine the network structure by multi-level logic
synthesis techniques. Also, we can assume a non-stationary
process and aim at finding gene dependencies that change
over time. The price we should pay for these two extensions
is increased computational complexity.

Another extension that is possible without a big computa-
tional overhead is to use multi-valued logic instead of binary
logic. For instance, we can divide state DFE into DE+ and
D FE—, which represent the expression level of a gene under
one condition is statistically higher and lower than the other
condition, respectively. In Espresso, multi-valued logic can
easily be handled by the 1-hot encoding.

Finally, the criteria used by Boolean logic optimizers may
be enhanced by incorporating additional constraints derived
from biological perspectives.
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