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Abstract - Constructions of gene and protein dynamic net-
work is a challenging and important problem in genomic re-
search while estimating the temporal correlations and non-
stationarity are the keys in this process. In this paper, we de-
velop Bayesian dynamic multivariate models to tackle this chal-
lenge for inferring the gene network profiles associated with 
diseases and treatments. We treat both the stochastic transition 
matrix and the observation matrix time-variant and include 
temporal correlation structures in the covariance matrix esti-
mations in the multivariate Bayesian setting. The unevenly 
spaced short time courses with unseen time points are treated 
as hidden state variables. Bayesian approaches with various 
prior and hyper-prior models with MCMC algorithms are used 
to estimate the model parameters. We apply our models to mul-
tiple tissue polygenetic affymetrix data sets. Preliminary results 
show that the genomic dynamic behavior can be well captured 
by the proposed model. 

KEYWORDS: Bayesian approach, Dynamic linear model, 
Multivariate time series, Temporal gene expression, Devi-
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I. INTRODUCTION 
After the completion of the genome sequencing project, new 
computational challenges arouse in functional genomics, 
which include gene/protein interaction network modeling, 
pathway discovery and function prediction. However, com-
plex phenotypes such as diseases typically involve multiple 
inter-correlated genetic and environmental factors that inter-
act in a hierarchical fashion, microarrays hold tremendous 
latent information that require more sophisticated computa-
tional tools to tackle the hidden information. 

Time-course gene expression data are often measured to
study dynamic biological systems since knowing when or 
whether a gene is expressed and how one interacts with oth-
ers can provide a strong clue of its biological roles. One of 
the goals of modeling time course microarray data is to infer 
and predict the genetic networks and gene-gene interactions 
from expression data. A study with genetic network ap-
proach using gene expression data was discussed and devel-
oped by D'haeseleer, Liang, and Somogyi [1]. Friedman and 
co-workers have used static Bayesian networks, which are 
graph-based models of joint multivariate probability distri-
butions that assess conditional independence between vari-
ables, to obtain simpler sub-models to describe gene interac-
tions from array data [2, 3]. Probabilistic Boolean Networks 
were recently developed as models of gene regulatory net-

works which are able to cope with uncertainty and discover 
the relative sensitivity of genes in their interactions with 
other genes. Chen et al. developed a stochastic differential 
equation model for quantifying transcriptional regulatory 
network in Saccharomyces cerevisiae [4].   

Dynamic linear models have greater flexibility in model-
ing non-stationary and nonlinear short time course microar-
ray data. However, current existing methods were based on 
standard Kalman filter methods that rely on the linear state 
transitions and Gaussian errors. Perrin et al. used a penalized 
likelihood maximization (MAP) implemented through an 
extended version of EM algorithm to learn the parameters of 
the model [5]. Rangel, et al. used classical cross-validations 
and Bootstrap techniques and Beal et al. used variation ap-
proximations with linear time invariant Gaussian setting for 
constructions of the regulatory network [6, 7]. Kim et al. 
developed an algorithm to identify interaction network and 
coupled it with non-parametric regression methods [8]. 

In this paper we utilize the merits of Bayesian flexibility 
of estimation procedures and the stochastic state space proc-
ess of modeling the temporal dynamics and develop Dy-
namic multivariate model in the fully Bayesian setting for 
inferring the interaction networks associated with diseases. 
Monte Carlo Markov Chain (MCMC) algorithms are used to 
sample the posterior distribution of the hidden variables and 
the model parameters [9, 10]. Various prior models with 
different hyper-prior distributions are simulated and com-
pared, and Deviance Information Criterion (DIC) is used for 
model checking and selections [11]. The developed models 
were applied to common gene expressions data derived from 
multiple tissues polygenic phenomena in complex biological 
systems [12]. 

II. METHODS 

II.A. Bayesian Dynamic Multivariate Model Formulation 
and Prior Model Specification 
Gene and protein expression measurements (observations) 

are contaminated by noise. A dynamic state space model 
will decompose the signal and noise processes into two 
model equations: the stochastic (evolution) equation and the 
observation equation. In a dynamic linear model, a sequence 
of P-dimensional real valued observation vector  of gene 
or protein expression is modeled by assuming that each time
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step,  are generated from a K-dimensional unobserved or 

hidden state variable , and the sequence of ’s define a 
Markov process. The joint probability of { }:
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where  is the first unobserved state and is assumed to 
be generated from conjugate distributions such as Gaussian, 
or student t-distributions.  is the transition density 
or probability of hidden states (such as genes that are not 
included in the study) and it can be defined in the stochastic 
evolution equations as: 
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where  is the deterministic transition function determin-

ing the mean of  given .  is the observation 
density or probability that can be defined in the observation 
equations as: 
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where  is the statistical transition function of the observa-
tion processes. The observation vector  are conditionally 
independent given  and is independent of ;

tf
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tS zS tz .
 are assumed to follow Gaussian or non-Gaussian dis-

tributions with means zeros of both population processes. 
 follow either linear or nonlinear settings. 
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We start with simple dynamic linear models in univariate 

case. Here, both stochastic and observation equations take 
linear forms and the distributions of the states and the obser-
vation variables are assumed to follow Gaussian distribu-
tions. The model is as follows: 

ttgtg ASS 1,, , ttgtg CSX ,,,     (4) 
where g=1,…,P (number of genes), t=1,…,T (number of 
time points). t, t are noise variables, A is state transition 
matrix. C is the observation matrix. The observations often 
can be divided into a set of input (or exogenous) variables 
and a set of output (response) variables. Including inputs in 
both the state equation and observation equation, the model 
(4) can be modified as follows: 

,1,, ttttgttg UBSAS ttgttgttg UDSCX ,,,
    (5) 

where  is the input (covariate) observation vector. B is 
input to the state matrix and D is input to the observation 
matrix. Here we are particularly interested in modeling the 
effects of the influence of the expression of one gene at a 
previous time point on another gene, its associated hidden 
variables and the gene-gene interactions. Therefore we take 

1
, in which the input is replaced by the pervious time 

step for modeling the gene-gene interaction. Thus our model 
is further simplified into: 
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where AC is the hidden state dynamic matrix with the influ-
ence of hidden state variables on gene expression level at 
each time point, CB+D contains both the gene-to-gene inter-

action and the gene-to-gene interactions ‘through’ the hidden 
state over time and t is the noise. 

Rangel, et al. and Beal, et al. assumed that A, B, C, D are 
linear and time-invariant matrices in the dynamic linear 
model setting [6, 7]. Here in our model (6), we initialized 
our model with a time varying matrix. The motivation of the 
above dynamic model with time varying coefficient comes 
from our major prediction goal, which requires a model not 
only to have good fit in the sampling period, but also a good 
generalization performance. Since microarray experiments 
are more concerned about the short term prediction given the 
short term time course data, as Congdon suggested, the in-
troduction of time variability is advisable [9]. In this way, 
the underlying parameters to be estimated evolve through 
time with continuous measure instead of discrete. 

One weakness of the above model is that it is restricted to 
univariate multiple time courses measured simultaneously 
on a common system. Multivariate models that can describe 
patterns of dependency among multiple series (genes across 
time) may be helpful to discover the gene dependences of 
the underlying processes. We extend the above model from 
univariate to multivariate dynamic model via covariance 
structure for learning gene correlations and their temporal 
behavior for constructing the gene networks. Here, each se-
ries depends on both its own past and the past values of the 
other series, therefore the variations in expression for a 
given gene can be predicted by a small set of other genes. 
One advantage of simultaneously modeling several series is 
the possibility of pooling information from related genes to 
improve the precision and out of sample forecasts [9]. 

In order to incorporate the fully hierarchical Bayesian set-
ting into the multivariate model for learning the model pa-
rameters and model structures, and using probability density 
functions, we formulate Bayesian Dynamic multivariate 
model (BDM) as follows by modifying (6):  

tX  ~MVN(ut, t), (observation equation)          (7) 
ut = 11 )()( tttt XDCBSAC , (systematic equation)      (8) 

AC t ~MVN( ,1 1), (CB+D)g~MVN( ,2 2)      (9) 
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where 1, 2,  are inverse positive definite correlated 
covariance matrices (or precision matrices) with particular 
structures and they are generated from an inverse Wishart 
distribution [9]. 

V

,1 2  are generated from t-distributions or 

Gaussian distributions with vague hyper inverse-Gamma 
distributions. The biological merit of this model compared to 
the previous one is that the correlated gene structure via the 
estimated correlation-covariance matrix can be used to infer 
the gene-gene interaction networks. Here we start with a 
model with Multivariate Gaussian distribution with mean 
zero and correlated covariance matrix while the hyper-
parameters of the correlated covariance matrix will be gen-
erated from a multivariate distribution, such as an inverse 
Wishart distribution.  
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The estimations of the parameters and hyper-parameters 
in the covariance matrix are conducted by MCMC algo-
rithms. The sensitivity to prior specifications are tested and 
Deviance Information Criterion is used for model selection 
and comparison. 

II.B. Monte Carlo Markov Chain for Posterior Inference  
Since temporal gene array data can be considered to be 

generated from a continuous dynamical system, it is reason-
able to assume that the values of the hidden states S(t) do not 
change much from one time index to the next. Therefore, the 
dynamic model representing function g is used to model 
only the change. Let us denote the observed gene expression 
data with , the hidden state values with 

 and all the other model parameters 
with

))(),...,2(),1(( TxxxX

))(),...,2(),1(( TsssS
. Here, the presence of unobserved components (hid-

den variables) makes the maximum likelihood inference 
more difficult to apply. Furthermore, since the temporal ex-
pression data includes a series of highly correlated variables, 
which may have varying degrees of relevance to the out-
come, conventional statistical models with Maximized Like-
lihood approaches can not set the coefficients of irrelevant 
variables (genes) to zero (multi-collinearty). These variables 
with nonzero values reduce the model's generalization per-
formance and cause overfitting. 

The fully Bayesian approach is preferable, since it allows 
treatment of general dynamic multivariate models with 
shrinkage and regularization, can deal with small size prob-
lems and make the simulation based approach easier, such as 
MCMC to parameter estimation and latent factor filtering. In 
a fully Bayesian approach not only the uncertainty resulting 
from the error is accounted for in the estimation of the dy-
namic parameters via credible intervals, but the hyper-
parameters are also estimated through the hierarchically con-
structed priors and the integration of all the parameters. 
Monte Carlo methods can be used to approximate this inte-
gration by simulation. Monte Carlo Markov Chain methods 
can be used to sample from the fully Bayesian posterior dis-
tributions of all unknown quantities. This approach also al-
lows us to examine the robustness of the inference with re-
spect to choices for the priors and hyper-priors. For the 
Monte Carlo method Gaussian approximations centered on 
the posterior models was implemented in WinBugs using 
Gibbs sampling [11]. We utilized this in our proposed mod-
els. Moreover, we used over-relaxation methods to aid the 
convergence and reduce the chance of local maxima. 

II.C. Model Comparisons, Selection Criteria and Valida-
tions
In order to choose the best model for prediction, the 

model selection criteria, such as the Akaike Information 
Criterion (AIC) or Bayesian Information Criterion (BIC) or 
Bayes factors can be considered. Although AIC is useful for 
non-nested models, it works poorly in the case of multi-
collinearty, which is typical for gene expression data. It has 
drawbacks of tending to be biased for complicated models 
due to the fact that log-likelihood increases faster than the 

model complexity component. Deviance Information Crite-
rion is a new measure proposed by Spiegelhalter, et al. for 
model complexity and goodness of fit under the Bayesian 
setting and it’s more appropriate when comparing complex 
hierarchical models in the Bayesian setting, where the num-
ber of parameters is not clearly defined [11]. One advantage 
is its inclusion of a prior distribution, which induces a de-
pendency between parameters that is likely to reduce the 
effective dimensionality. Furthermore, it helps the prior 
models’ identifications. DIC can be summarized by the pos-
terior expectation of the deviance and complexity (effective 
number of parameters) as the expected deviance minus devi-
ance at the posterior expectation of the parameters. We used 
DIC for within sample fit measure for model selections. 

III. RESULTS 
The multiple tissue data applied here are the results of 

three experiments to characterize the response of a single 
bolus dose of methylprednisolone (MPL) in rats [12]. Affy-
metrix GeneChips ® Rat Genome (R_U34A) microarray 
chip, which contained 8799 probe sets, was used in this 
study.  Data were obtained at the following 17 time points: 0, 
0.25, 0.5, 0.75, 1, 2, 3, 4, 5, 5.5, 6, 8, 12, 18, 30, 48, 72 hours 
after treatment. Gene expression levels from 0.25 hour to 72 
hours were converted to ratios via a simple calculation that 
involved dividing the gene expression at time ti by the gene 
expression at time t0, where i represents the specific post-
dose time-point and t0 represents baseline at time = 0 hours, 
i.e. the control group levels at t0. These ratios were subse-
quently natural-log transformed to produce approximately 
normally distributed gene expression levels at each sampling 
time point. After pre-processing and gene filtering using 
Bayesian finite Markov mixture model and meta analysis we 
developed earlier [13], 6 genes that differentially expressed 
commonly in three organs (kidney, liver and muscle) and 44 
genes differentially expressed commonly in two organs 
(liver and muscle) were selected in the preliminary study for 
constructing gene interaction networks based on the pro-
posed Bayesian dynamic multivariate models. 

The prior models and hyper-priors were initialized with 
various forms and sensitivity analysis was conducted from 
various initials. 2000 samples after 6000 burn-ins were used 
for computation. We were able to achieve the smallest DIC 
value of 195.1 with one of the proposed model. The esti-
mated covariance matrix was converted into correlation co-
efficients for constructions of the interaction networks based 
on the estimated correlation coefficients from the model. All 
the correlation coefficients that were larger than 0.10 (or 
smaller than -0.10) were then highlighted and the gene-gene 
interactions were based on the correlation coefficients. Fig. 1 
displays the results of the constructed gene-time-gene inter-
action network for 6 selected genes that are significantly 
differentially expressed at 5 time points. Fig. 2 shows the 
constructed interaction network based on 44 commonly dif-
ferentially expressed genes in both liver and muscle. 
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IV. DISCUSSION 
Inferring networks of gene and proteins from biological data 
is a central issue of computational biology. To delineate the 
possible interactions of all genes in a genome is a task for 
which conventional experimental techniques are ill-suited. 
Sorely needed are rapid and inexpensive computational 
methods that identify candidates for interacting genes. Our 
proposed model can explicitly learn gene-gene interaction 
and gene-time-gene interaction networks by its model speci-
fication (e.g. estimation of scale matrix) in the Bayesian 
dynamic multivariate setting, which could be useful for fur-
ther pathway discovery. The validation analysis of the de-
veloped model for the interaction networks and pathways 
will be further compared to the results from Ingenuity Path-
way software (3.0 version) and other existing pathway data-
bases and literature. Future work will include the develop-
ment of a learning algorithm in the above models that can 
decompose the latent component of correlated genes matrix 
and also capture the key component in the multivariate time 
series. Another extension of the current work is overcome 
the slow convergence problems of MCMC algorithms by 
using jump reversible MCMC algorithm and variational 
method. In this way, we can also inferring the medium size 
interaction networks rather than small size network.  
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Figure 1: gene-time-gene dependence interaction network derived from 
six genes that differentially expressed commonly in three organs (kid-
ney, liver and muscle) and five significant time points (x-axis: 5 sig-
nificant time points (0.25, 0.5, 1, 2, 4 hrs); y-axis: six selected genes) 
using BDM and multiple tissues data. 

Figure 2: Constructed gene-gene interaction network using BDM and 
multiple tissues data for the selected 44 differentially expressed genes 
in two organs (liver and muscle). 
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