
 
 

 

 

Abstract—The aim of this study was to reveal and analyze 
the nonlinear characteristics of heart sounds, reflected in the 
quadrature phase coupling of the contained frequencies, as 
they evolve over time. To achieve this, the continuous wavelet 
transform was combined with third-order statistics/spectra in 
order to analyze their non Gaussian character, taking into ac-
count their non-stationarity. Heart sounds from patients with 
several pathologies that exhibit murmurs were drawn from a 
heart sound database and analyzed in the time-bi-frequency 
domain. The analysis results justified the efficient performance 
of this combinatory approach to reveal and quantify the evolu-
tion of heart murmurs nonlinearities with time. 

I. INTRODUCTION 
HE DIAGNOSTIC value of heart sounds has been 
known since the years of Hippocrates. Cardiac ausculta-

tion constitutes until nowadays a non-invasive and inexpen-
sive diagnostic method. During the last decades, the evolu-
tion of computers and their introduction in clinical practice 
has led to new signal analysis techniques, which reveal heart 
sound characteristics that are related to several pathologies 
[1]-[6]. 

There are two main heart sounds that are normally pre-
sent, S1 and S2. The heart sound S1 is associated with the 
closure of the mitral and tricuspid valves, whereas S2 is the 
result of the closure of the aortic and pulmonic valves. Apart 
from S1 and S2, other sounds can also be heard, such as 
heart murmurs. Murmurs are defined as sustained noises that 
are audible during the systole, diastole or both. Backward 
regurgitation (due to a leaking valve, atrial or ventricular 
septal defect or arteriovenous connection), forward flow 
through narrowed or deformed valves, a high rate of blood 
through normal or abnormal valves, vibration of loose struc-
tures within the heart, or continuous flow through A-V 
shunts are some common causes of murmurs [7]. 

Spectral analysis and parametric modelling have been 
widely applied to heart sound analysis [2]-[5], [8]. Those 
methods, which are based on second-order statistics, did not 
take into account the nonlinearity and non Gaussianity of the 
analyzed signals, since the second-order statistics (autocor-
relation) suppress any phase information.  More recent 
works include the use of the S Transform [9], the general-
ized spectral coherence [10], the Wigner-Ville distribution 
[11]-[12], neural networks [13]-[15], wavelet transform 
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[16]-[17], and wavelet packet decomposition [18], in order 
to reveal information about the non-stationarity of the ana-
lyzed signals. Additionally, higher-order statistics have been 
introduced [19]-[20], which preserve the phase characteris-
tics of the signals, resulting in detection of their deviation 
from Gaussianity. However, no method has combined wave-
let transform with higher-order statistics to examine both the 
non-stationarity and non-Gaussianity of murmurs. 

In the current study, this combinatory approach is exam-
ined for the nonlinear analysis of murmurs, combining the 
wavelet transform with higher-order statistics, resulting in 
the so-called wavelet bispectrum and wavelet bicoherence 
[21]. 

II. METHODOLOGY 

A. Continuous Wavelet Transform (CWT) 
The continuous wavelet transform (CWT) is defined as 

[22] 
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where )(tx  is the signal in time-domain, ( )()( 2 ℜ∈ Ltx ), * is 
the complex conjugate and )(tψ  is the mother wavelet 
scaled by a factor a , 0>a , and dilated by a factor b . In the 
CWT, the time and scale parameters ),( ba  are continuous. 
Due to its direct analogy to the Fourier transform, the com-
plex Morlet wavelet is chosen for the realization of the 
CWT, which is given by [23] 
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where bf  is a bandwidth parameter and cf  is the wavelet 
center frequency. 

B. Higher-Order Spectra (HOS) 
The bispectrum (BS) ),( 21 ωωB  of a process )}({ kX  is 

defined as [24]: 
)}()()({),( 212121 ωωωωωω += ∗XXXEB ,    (3) 

where }{⋅E  is the expectation value, 2,1),( =iX iω  is the 
complex Fourier coefficient of the process )}({ kX  at fre-

quencies iω  and )( iX ω∗  is its complex conjugate. The bi-
coherence (BC), or normalized BS, is defined as [24]: 
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where 2,1),( =iP iω  is the power spectrum at frequencies 

iω  of the process. The magnitude of BC, ),( 21 ωωb , or bi-
coherency index, constitutes a measure of the amount of 
quadrature phase-coupling that occurs in a signal between 
any two of its frequency components, due to their non-linear 
interactions. The bicoherence index is bounded between 0 
and 1; when ),( 21 ωωb  is equal to 1, the frequency compo-

nents at 1ω  and 2ω  are completely phase-coupled, whereas, 

when ),( 21 ωωb  is equal to 0, there is no quadrature phase-

coupling between the harmonics at 1ω  and 2ω  [25]. 

C. Wavelet-based HOS 
By analogy to the definition of the bispectrum in Fourier 

terms (see (3)), the wavelet bispectrum (WBS) is defined as 
[21] 
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where the integration is done over a finite time interval 
10: τττ ≤≤T , and 21,, ααα  satisfy the following rule: 
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WBS expresses the amount of quadrature phase-coupling 
in the interval T , which occurs between wavelet compo-
nents of scale lengths ,, 21 aa  and a  of )(tx such that the 
sum rule of (6) is satisfied. By interpreting the scales as in-
verse frequencies, ,2 aπω =  the WBS can be interpreted as 
the coupling between wavelets of frequencies that satisfy 

,21 ωωω +=  within the frequency resolution. 
Similarly to the definition of BC (see (4)), the wavelet bi-

coherence (WBC) can be defined as the normalized WBS, 
i.e., 

2
1

22
21

21
21

),(),(),(

),(),(

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

∫∫
T

x
T

xx

w
w

daWdaWaW

aaBaab

τττττ

  (7) 

which magnitude ),( 21 aabw  can attain values between 0 
and 1. For ease of interpretation, the squared WBC plotted 
in the −),( 21 ωω plane, i.e., 2

21 ),( ωωwb , is preferred. Due 
to the symmetries in the definition and the limitation set by 
the Nyquist frequency sω  [26], the estimation of WBC in 
the whole bi-frequency plane can be based on its values in 
the principal region },,:{ 21121 sωωωωωω ≤+≤Δ . 

Since the WBC defined in (7) refers to a certain time in-
terval T , its value is corresponded to the center of this in-
terval, i.e., 20 Tt =  . Consequently, the evolutionary WBC 
(EWBC) can be defined as 
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where totalT  is the total time duration of the analyzed signal 
).(tx  When using EWBC, the evolution of the nonlinearities 

across time can be represented, within a time-resolution con-
trolled by the selection of the 1TΔ  value. For a two-
dimensional estimation of the variation of the wavelet bico-
herence over time, the energy of the evolutionary wavelet 
bicoherence (EEWBC) is introduced, which is defined as 
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In general, the numerical values of EEWBC depend on 
the chosen calculation grid, thus they provide qualitative 
summarization of the underlying information. 

III. DATA SET AND IMPLEMENTATION ISSUES 
The proposed analysis was tested on pre-classified heart 

sound signals appropriate for physicians’ training, corre-
sponding to abnormal heart sounds and heart murmurs, 
drawn from a heart sound database [27]. Sections of 15 s 
(containing 20 heart beats on average) of every signal were 
digitized with a 16-bit A/D converter at a sampling fre-
quency of 025.11=sf  kHz. Records of 8000 samples were 
divided into 512-point segments, with an 80% overlapping 
percentage, and the wavelet bispectrum and wavelet bico-
herence of each segment were estimated. Heart sound analy-
sis was carried out using Matlab 7.0 (The Mathworks Inc., 
Natick, MA). The frequency range of analysis was selected 
as 400:10:10=f Hz with corresponding scales calculated 
by fffa sc= , a central frequency of complex Morlet 
wavelet at 8125.0=cf  Hz and its bandwidth parameter 
equal to 128=bf . The energy of the evolutionary wavelet 
bicoherence is estimated within the frequency range 

400:10:130=f  Hz, because the aim is to observe the ef-
fect of the murmurs’ existence, which appear at frequencies 
higher than those of S1 and S2 sounds. 

IV. RESULTS AND DISCUSSION 
Figure 1 depicts an 8000-point segment of a heart sound 

recording from a patient with aortic stenosis and aortic in-
sufficiency. In Fig. 1(a) the normalized heart sound signal in 
the time domain is depicted. As it can be seen from Fig. 
1(a), the recorded signal exhibits two high amplitude sec-
tions that correspond to heart sounds S1 and S2 (~0-0.05 s 
and ~0.3-0.35 s respectively) and a murmur between the two 
normal heart sounds (~0.05-0.3 s). Fig. 1(b) shows the cor-
responding energy of the evolutionary wavelet bicoherence 
for frequencies between 130 and 400 Hz. From this figure, it 
is apparent that the EEWBC exhibits a decrease when corre-
sponding to the normal heart sounds (S1 and S2), i.e., the 
degree of the phase coupling of the frequency content at the 
frequency range under investigation is low. In Fig. 1(c), the 
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wavelet coefficients that correspond to a 512-point segment 
of the S1 heart sound (~0.02-0.06 s) are depicted. From this 
figure, the existence of one dominant low frequency is ap-
parent. In Fig. 1(d), the corresponding squared wavelet bis-
pectrum is depicted. The phase coupling that takes place is 
due to this only one frequency. In Fig. 1(e), the wavelet co-
efficients that correspond to a 512-point segment of the 
heart murmur (~0.06-0.10 s) are shown. From this figure, 
the presence of multiple higher frequencies is apparent. In 
Fig. 1(f), the corresponding squared wavelet bispectrum is 
depicted. Quadrature phase-coupling exists between the 
harmonics revealed in the wavelet bispectrum content corre-
sponding to the heart murmur. In particular, the distinct 
peaks appear at ≈),( 21 ff (100,100) Hz, 

≈),( 21 ff (100,200) Hz, and ≈),( 21 ff (100,300) Hz. Self-
phase coupling is also present at ≈),( 21 ff (200,200) Hz, 
which is related to the frequency located at 

≈+= 213 fff 400 Hz. 
The results from the analysis of another case are shown in 

Fig. 2. In particular, Fig. 2 depicts an 8000-point segment of 
a heart sound recording from a patient with patent ductus 
arteriosus. In Fig. 2(a) the normalized heart sound signal in 
the time domain is depicted. As it can be seen from this fig-
ure, the acquired signal exhibits two high amplitude sections 
that correspond to heart sounds S1 and S2 (~0-0.05 s and 
~0.35-0.4 s respectively) and a murmur between the two 
normal heart sounds (~0.05-0.35 s). Fig. 2(b) shows the cor-
responding energy of the evolutionary wavelet bicoherence 
for frequencies between 130 and 400 Hz. 

 

From this figure, it is apparent that, similarly to the previous 
examined case, the EEWBC exhibits a decrease when corre-
sponding to the normal heart sounds, i.e. the degree of phase 
coupling of the frequency content at the frequency range 
under investigation is low. In Fig. 2(c), the wavelet coeffi-
cients that correspond to a 512-point segment of the S1 heart 
sound (~0.02-0.06 s) are depicted. The existence of one 
dominant low frequency is apparent here. In Fig. 2(d), the 
corresponding squared wavelet bispectrum is depicted. 
Again, the phase coupling that takes place is due to this only 
frequency. In Fig. 1(e), the wavelet coefficients that corre-
spond to a 512-point segment of the heart murmur (~0.54-
0.58 s) are shown. From this figure, the presence of multiple 
high frequencies is apparent. In Fig. 2(f), the corresponding 
squared WBS is depicted. Quadrature phase-coupling exists 
between the harmonics revealed in the wavelet bispectrum 
content corresponding to the heart murmur. In particular, the 
distinct peaks appear at ≈

1
),( 21 pff (75,125) Hz, 

≈
2

),( 21 pff (75,150) Hz and ≈
3

),( 21 pff (75,250) Hz, which 

are related to frequencies ≈+=
1

)( 213 pfff 200 Hz, 

≈−=
2

214 p
fff 75 Hz and ≈−=

3
215 p

fff 175 Hz, re-

spectively. Self-phase coupling is also present at 
≈),( 21 ff (125,125) Hz, which is related to the frequency 

located at ≈+= 216 fff 250 Hz ( ,3,2,1, =ipi  denotes the 
bi-frequency pairs). These results show that the wavelet-
based higher-order spectral parameters capture the nonlinear 
characteristics of murmurs during the S1 to S2 transition. 

 

 
 

 

Fig. 2.  An example of the analyzed signal that corresponds to a patient 
with patent ductus arteriosus. (a) An 8000-point segment of the signal 
under investigation; (b) energy of the evolutionary wavelet bicoherence; 
(c) wavelet coefficients of a 512-point segment of the heart sound S1; (d) 
corresponding WBS; (e) wavelet coefficients of a 512-point segment of 
the heart murmur; (f) corresponding WBS. 

 
 

Fig. 1.  An example of the analyzed signal that corresponds to a patient 
with aortic stenosis and aortic insufficiency. (a) An 8000-point segment of 
the signal under investigation; (b) energy of the evolutionary wavelet 
bicoherence; (c) wavelet coefficients of a 512-point segment of the heart 
sound S1; (d) corresponding WBS; (e) wavelet coefficients of a 512-point 
segment of the heart murmur; (f) corresponding WBS. 
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When comparing the results shown in Figs. 1 and 2, it can 
be seen that the difference in the pathology is reflected in 
the bi-frequency domain. In particular, a shifting is noticed 
between the main frequency pairs that exhibit quadrature 
phase coupling.  

Moreover, in the case of patent ductus arteriosus, the 
wavelet bispectrum of the corresponding murmur (Fig. 2(f)) 
is more defused compared to the one from the murmur of 
aortic stenosis and aortic insufficiency (Fig. 1(f)). When 
observing both murmurs in the time domain, an increased 
similarity in their morphology is noticed, unlike the clear 
differences that they exhibit in the wavelet bispectrum do-
main. This shows the discrimination ability of the wavelet-
based higher-order spectrum to differentiate between differ-
ent pathologies with similar heart sound impression. To this 
end, the proposed analysis could be used as an advanced 
tool that could contribute to the objective analysis of patho-
logical heart sounds, such as murmurs. 

V. CONCLUSION 
A combination of wavelet transform with third-order sta-

tistics/spectra applied to nonlinear analysis of heart sounds 
related to heart pathology was presented in the current study. 
This approach reveals the nonlinear characteristics of heart 
murmurs, as they evolve during the cardiac sound patter. 
The promising results presented here allow the extension of 
this analysis to large-scale experiments, to further explore 
the association of these nonlinear characteristics of heart 
sounds with the type and the severity of the related pathol-
ogy. 
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