Proceedings of the 28th IEEE
EMBS Annual International Conference
New York City, USA, Aug 30-Sept 3, 2006

SaBP2.18

ACCELERATION OF FIBER TRACKING IN DTI TRACTOGRAPHY BY
RECONFIGURABLE COMPUTER HARDWARE

Manbir Singh!, Aditya Kwatra*, Chi-Wah Wong!, Viktor Prasannat
TDepts. of Radiology and Biomedical Engineering, fDept. of EE-Systems
University of Southern California, Los Angeles, CA 90089

Abstract— Diffusion Tensor Imaging (DTI) tractography is a
computationally intensive procedure. The most time consuming
operation is the tracking of fibers from every voxel in the
scanned volume. Fiber tracking can be accelerated significantly
by use of reconfigurable hardware, such as Field Programmable
Gate Arrays (FPGAs), which can track fibers at very high
speed by exploiting the flexibility, parallelism and high on-chip
bandwidth. Such acceleration has the potential to lead to real-
time tractography. In this paper we isolate key kernels within
the tracking step and through a simulation study, analyze a
specific FPGA architecture comprising deeply pipelined kernel
chains running in parallel. Our results suggest that the FPGA
based computer architecture could achieve a two orders of
magnitude speed-up in the fiber-tracking algorithm over an
optimized C-code.

I. INTRODUCTION

Processing DTI tractography data is computationally very
expensive. It requires large amount of memory storage,
memory bandwidth, computing power, and tens of minutes
of data processing to accomplish 3D whole-brain tractog-
raphy. Instead of relying on seeds within specific regions
only, here we assume that tractography would be conducted
over the entire brain, with one or multiple seeds per voxel
to quantify whole-brain connectivity. An example of 3D
tractography is presented in Figure 1, where tracts from a
particular brain slice are shown [1]. These tracts provide
vital information about brain connectivity and can be used
clinically to investigate brain damage or abnormal function.
For example, in brain trauma, DTI tractography reveals new
and unique information on loss in brain connectivity caused
by axonal injury that is difficult to detect by regular MRI or
CT scans, and it is critical that such information be available
to the clinician as rapidly as possible, preferably in real time
so that diagnosis and treatment could begin on the spot.
Unfortunately, due to the computational complexity required
for DTI 3D tractography, its implementation in real-time is
challenging at the present time.

Tractography consists of many sub-tasks out of which fiber
tracking is the most time consuming task. A commonly used
single-tensor per voxel streamline tractography approach
relies on tensor estimation and linear propagation with step
size typically around 0.1 — 0.2mm [2]. The small step size
in conjunction with tensor interpolation yields sub-voxel
sampling that reduces the probability of duplicate tracts when
every voxel is addressed. Propagation termination is based on
predetermined thresholds related to the degree of diffusion

1-4244-0033-3/06/$20.00 ©2006 IEEE.

Figure 1: An example of 3D tractography with tracts origi-
nated from one slice out of 28 slices. Similar tracts are found
for the remaining 27 slices.

anisotropy or deflection angle between steps [2]. The entire
fiber tracking procedure can be further divided into three
computationally intensive kernels — tensor interpolation, ten-
sor diagonalization, and anisotropy calculation [2]. These
calculations are performed in each step to determine the new
step direction and whether the propagation should continue.
These kernels are particularly suited to implementation by
FPGAs, which have been an attractive option for computa-
tionally intensive applications. Recent research has shown
that FPGAs can achieve superior performance compared to
general purpose processors [3], [4]. The flexibility offered
by reconfigurable FPGAs can be exploited to maximize
the achievable parallelism. Very high on-chip bandwidth
provided by these devices helps to remove bottle-necks faced
by general purpose processors.

We have investigated a system level architecture to ac-
celerate the process of fiber tracking. The three kernels
mentioned above were implemented using VHDL in Xilinx
ISE 7.1 [5] and simulated in ModelSim 6.0a [6]. Acceleration
is achieved in two stages: 1. Pipelining of the kernel chain;
2. Multiple kernel chains running in parallel. Using the
IEEE 64-bit compliant floating point cores developed by
our group [7], with the kernels running at 100MHz, we
were able to achieve a speed-up on the order of 100x
over a current optimized software implementation using C
on a uni-processor. Our approach, implementation details
and performance comparison for these kernels pertinent to
tractography are presented in this paper.

4819

Algorithm 1: Fiber tracking algorithm

Input: Diffusion Tensor Matrix for each voxel of the given
volume of size x X y X z, and set of seed points

Output: Set of fibers tracked from each seed-point.

Cartesian Cube: A cube in Cartesian space joining the

centers of adjacent voxels
Seed point: A point where the fiber originates, located at
the center of Cartesian cube
Assumption: Each cartesian cube contains one seed point.
for i = 1...Total number of seed points

{

do /* Loop to traverse fiber steps */

{
Tensor Interpolation: Weighted diffusion tensor
(matrix D), based on the distance of the seed-point
from the 8 vertices of the cartesian cube, is calculated.
Tensor Diagonalization: Eigen-values and eigen-
vectors are calculated by Singular Value Decomposit-
ion of D
Trajectory Propagation: Direction of next step is
chosen from the eigen-vector corresponding to the
largest eigen-value. Direction is taken along the
angle smaller to previous step.
Anisotropy Calculation: Fractional Anisotropy is
calculated.

} while (FA > specified value and inter-step angle

< 45 degrees)

/* Fiber tracking continues till the condition on FA is */

/* violated */

} /* Fibers tracked from each seed point */

II. METHOD

DTI tractography has certain properties that can be ex-
ploited to accelerate its implementation on FPGAs. On
analysis of the DTI tractography algorithm, we have made
certain observations which are listed in Section II-A. We also
identified three computation intensive kernels on profiling the
C-code for DTI tractography.

A. Fiber Tracking Algorithm

The fiber tracking algorithm is discussed in Algorithm 1.
The following observations are noted:

1) Tracking of two fibers are independent of each other.
2) Tracking a fiber is a sequential process. Next step is
chosen at the end of processing of the initial step.

3) At step size of 0.2mm, for example, and voxel size of
2mmx2mmx4mm, a track navigates through a voxel
with at most 25 steps. Tracking starts from the center
of the cartesian cube and proceeds in two directions
opposite to each other.

4) The fibers might converge together or diverge out into
two branches. Such situation is taken into consideration
by starting from multiple seed points within the set of

Table I: Profiling of the C-code for DTI tractography

Kernels Execution Time (secs)
Tensor Interpolation 18.668
Tensor Diagonalisation 128.002
Anisotropy Calculation 5.934

images, which increases the processing time in direct
proportion to the number of seeds per voxel.

We profiled the C based software implementation for
DTTI tractography on an Intel Xeon Processor [8] running
at 800 MHz with 4GB RAM. The results of profiling the
C-code are shown in Table I. The three time consuming
kernels thus identified were found to be: Tensor Interpolation,
Tensor Diagonalization, and Anisotropy Calculation. The
kernel implementations are discussed in Section II-C and
the performance analysis is provided in Section III.

B. Accelerating DTI Tractography

The computationally intensive kernels are identified and
cascaded together to form a kernel chain. The deeply
pipelined kernel chain accepts input data every clock cycle.
Thus acceleration is achieved in two stages:

1) Pipelining: Deep pipelining of the kernel chain may be
exploited to compute the fiber tracks for independent
seed-points in parallel till the pipeline gets saturated.
As each fiber tracking is independent of the other,
the computation of kernels for different fibers can be
interleaved in the pipeline. Each kernel chain should
provide on the order of 30x speed-up.

2) Parallelization: The flexibility of the FPGA devices
can be exploited to maximize the parallelization. Many
such kernel chains can be implemented in parallel and
can be used to track independent fibers. Having 10
such kernel chains running in parallel woudl provide
an overall speed-up on the order of 300x.

C. Implementation Details

We designed and implemented the pipelined kernels using
VHDL in Xlinx ISE 7.1 [5] and simulated them in ModelSim
6.0 [6]. The architecture was designed to exploit as much
parallelism and pipelining as possible to maximize the speed-
up. The number of function calls to these kernels are of the
order of 107, as found on profiling the C-code.

1) Tensor Interpolation: Tensor interpolation is used
to calculate the six components of the weighted diffusion
tensor symmetric matrix at every step in fiber tracking.
The weights are based on the distance of the step point
from vertices of the cartesian cube. The basic computation
involved in this kernel is as follows:

Dy =%, Dy, X (X, — Xo) x (Yy = Y0) x (Zy, — Zy)
where

X, Yy, Z, are the X, y, z coordinates of the vertex v
Xo, Yo, Zy are the X, y, z coordinates of the seed point
Y, - summation over all 8 vertices

4820

Reduction Circuit

Figure 2: Tensor Interpolation Kernel

The architecture of the implemented kernel is shown in
Figure 2. The reduction circuit [9] is used as the fully
pipelined high throughput accumulator. The kernel was im-
plemented using the fixed point cores provided by Xilinx [5]
and after synthesis and simulation was found to run at
maximum frequency of 186.2 MHz.

2) Tensor Diagonalization: The symmetric tensor matrix
is a 3 x 3 matrix, which is diagonalized to calculate the
eigen-values and their corresponding eigen-vectors. Steps
in fiber tracking proceed along the direction of the longest
eigen-vector. The eigen-values and their corresponding
eigen-vectors are calculated using the Jacobi based Singular
Value Decomposition (SVD) [10] of a symmetric tensor
matrix. The following computation is involved for the
construction of the orthogonal matrices required for SVD:

_ Dgg—Dypp — sqn(0) — 1 —
Opg = —Hp5—22, t = v ¢ T,+1,S—tc,

prq
Dyew = Q X Do % QT
where given p=0, q=1

C —S
Qoi=|s ¢ 0
0O 0 1

The orthogonal matrix is multiplied with the diffusion
tensor matrix as above to complete one iteration of the SVD.
The algorithm keeps iterating for all values of p = 0 to 2 and
q = p+1 to 2. These iterations continue till the off-diagonal
elements of the diffusion tensor matrix D, tend to 0. The
SVD of a matrix is known to converge in O(n?) iterations.
Thus the maximum iterations for SVD of a 3 x 3 takes at
most 9 iterations. The implementation details of our kernel
are shown in Figure 3. The kernel architecture consists of the
pipelined implementation of one iteration. All consecutive
iterations are interleaved to reuse the same hardware. The
kernel was implemented using the fixed point cores provided
by Xilinx [5] and after synthesis and simulation was found
to run at maximum frequency of 111.3 MHz.

3) Anisotropy Calculation: ~ The anisotropies are
calculated to verify the termination of the fibers. The
process of tracking a fiber terminates if the fractional
anisotropy at a particular step falls below a specified value.
The input to this kernel are the eigen-values A1, Ao, and A3
obtained from the tensor diagonlization kernel. The kernel
involves the following calculations:

D Buffer
O] [
: OHD-@D-@-O-Op

Buffer
D@D
%Pw

Eigen-values
of
Iteration N+1

Moy o> e

Figure 4: Anisotropy Calculation Kernel

FA = VB3X[(A1=N)24+ (A1 —A)2+ (A1 —N)2
V2x(AZxA2xAZ)
A1+Aa+A3
3

where \ =

The implementation details of the kernel are shown in
Figure 4. The kernel was implemented using the fixed
point cores provided by Xilinx [5] and after synthesis and
simulation was found to run at maximum frequency of 162.8
MHz.

III. PERFORMANCE ANALYSIS

Preliminary implementations of the kernels to form a
kernel chain were done using the fixed point IP cores
available in Xilinx [5]. Based on the maximum frequency
for the kernel implementations, we have made a conservative
estimate of using 100 MHz as the frequency of the kernels
together as a kernel chain. In this section we provide the
performance analysis of the kernels when using the IEEE
64 bit floating point cores. The speed-up achieved is mainly
due to the deep pipeline and independence among different
fiber tracts. Thus input data-set from different fiber tracts can
be provided continuously to the pipeline. We have compared
our implementation performance with the profiled C-code.
The profiling results are shown in Table I. As obtained

Table II: Floating point core details

Floating-point | Pipeline Maximum
cores stages Frequency (MHz)
Adder 14 170
Multiplier 11 170
Divider 58 140
Square Root 55 169

4821

from profiling, each kernel is executed on the order of
107 times. Thus the initial combined latency of the kernel
chain is neglected when compared to the throughput of the
pipeline. Even if the entire latency of the pipeline were about
5000 clock cycles, initial time taken to fill up the pipeline
at 100 MHz clock frequency would be just 0.5 pseconds.
We discuss each kernel below and analyze the performance
improvement.

A. Deeply Pipelined Kernel Chain

1) Tensor Interpolation: This kernel uses a fully pipelined
tree structure and a reduction circuit. Set of 7, 64-bit floating
point inputs are provided every clock cycle and the output
is available after every 8 cycles. This delay of 8 cycles is
due to the accumulation of the elements of the diffusion
tensor matrix from eight vertices of the cartesian cube. The
throughput of providing an output after every 8 cycles results
in the time taken to process 107 such operations to be equal
to 0.8 seconds. The same operation on profiling the C-code
takes about 16 seconds.

2) Tensor Diagonalization: This kernel receives the input
as the six entries of the symmetric diffusion tensor matrix
from the tensor interpolation kernel. Tensor interpolation
kernel takes 48 cycles to produce 6 elements of the sym-
metric diffusion tensor matrix. This kernel provides a very
high throughput. It is capable of producing an output every
clock cycle, but due to the input being delayed by 48 cycles,
each output is produced after every 48 cycles. Thus at this
rate, both the tensor interpolation kernel and the tensor
diagonalization kernel together will be able to process the
input data in 4.8 seconds as compared to 2 minutes and 27
seconds of the profiled C-code.

3) Anisotropy Calculations: This fully pipelined kernel is
capable of providing an output every clock cycle. The output
is delayed by 48 cycles from tensor diagonalization kernel,
thus this latency is reflected in the output of the third kernel
as well. The three kernels together as a kernel chain produce
an output every 48 cycles. Thus total time taken to compute
107 such computations of the three kernels together at 100
MHz is about 4.8 seconds as compared to 2 minutes and 32
seconds on profiling the C-code.

B. Parallel Implementation of Multiple Kernel Chains

Multiple kernel chains operating on different fiber tracts
in parallel can be implemented at the system level. There
is no shared computation or memory access restrictions as
the tracking of fibers are independent to each other. This
will provide a further speed-up on the order of the number
of kernel chains implemented in parallel. The maximum
memory-FPGA bandwidth allowed is about 8 GBytes/sec,
as provided by the existing FPGA modules, e.g. BenDATA-
WS FPGA module provided by Nallatech [11]. The input
required by the tensor interpolation kernel is one diffusion
tensor element every clock cycle. The other inputs can be
locally available, if the size of the cartesian cube is known.

Each kernel chain requires one 64-bit floating point ele-
ment every clock cycle, thus requiring a bandwidth of 0.8

Table III: Performance Comparison with C-code

Time Taken (secs)
Kernels C-code | FPGA
Tensor Interpolation 18.668 0.8
Tensor Interpolation + Diagonalization 146.67 4.8
Tensor Interpolation + Diagonalization
+ Anisotropy Calculation 152.604 4.8

GBytes/sec. At this rate we can support 10 kernel chains in
parallel. Bounded by the available area, even if we are able to
implement 5 kernel chains, we would be able to complete the
computation of the three kernels in 0.96 seconds, a speed-up
of 155x.

IV. CONCLUSION

The pipelined kernel chain was able to complete the
required computation in 4.8 seconds as compared to 2
minutes and 33 seconds obtained by profiling the C-code,
thus providing a speed-up of 31x. The results have been
summarized in Table III. Further speed-up is also possible
when multiple such kernel chains are implemented in paral-
lel. Implementation of 10 such kernel chains, for example,
would give a further speed-up of 10X, thus completing the
computation of the three kernels in about 0.48 seconds.
Reconfigurable computing would be particularly useful when
multiple seeds are used. With 10 seeds per voxel, for
example, the fiber tracking step could be completed in less
than 5 seconds, whereas an optimized C-code would require
about 25 minutes. Thus reconfigurable computing has the
potential to enable almost real-time tractography in the near
future.

REFERENCES

[1] Singh M, Hwang D, Sungkarat W, and Veera K, “Evaluation of MRI
DTI-tractography by tract-length histogram,” Progress in Biomedical
Optics and Imaging: Physiology, Function and Structure from Medical
Images, vol. 5746, no. 1, pp. 138-147, 2005.

[2] S. Mori and P. C. M van Zijl, “Fibre tracking: principles and strategies
- a technical review,” NMR Biomed, vol. 15, pp. 468480, 2002.

[3] Gokul Govindu, Seonil Choi, Viktor K. Prasanna, Vikash Daga, Srid-
har Gangadharpalli, and V. Sridhar, “A high-performance and energy-
efficient architecture for floating-point based LU decomposition on
FPGASs,” in Proceedings of the 11th Reconfigurable Architectures
Workshop, April 2004.

[4] Ling Zhuo and Viktor K. Prasanna, “Scalable and modular algorithms
for floating-point matrix multiplication on FPGAs,” in Proceedings
of the International Parallel and Distributed Processing Symposium,
New Mexico, April 2004.

[5] Xilinx, Inc., ,” http://www.xilinx.com.

[6] Mentor Graphics ModelSim, ,” http: //www.model . com.

[71 Gokul Govindu, Ronald Scrofano, and Viktor K.Prasanna, “A library
of parameterizable floating-point cores forFPGAs and their application
to scientific computing,” in Proceedings of the International Confer-
ence onEngineering Reconfigurable Systems and Algorithms, Toomas
Plaks, Ed., June 2005.

[8] Intel Corporation, ,” http://www.intel.com.

] Ling Zhuo, Gerald R. Morris, and Viktor K. Prasanna, “Designing
scalable FPGA-based reduction circuits using pipelined floating-point
cores,” in Proceedings of the 12th Reconfigurable ArchitecturesWork-
shop, Denver, CO, April 2005.

[10] William H. Press, Saul A. Teukolsky, Willian T. Vetterling, and
Brian P. Flannery, Numerical Recipes in C, Cambridge University
Press, second edition, 1999.

[11] Nallatech, ,” http://www.nallatech.com.

—_
\O

4822

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for export to IEEE PDF eXpress. May 2005. PaperCept.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

