
Abstract— During cell progression from one state to another,

such as transformation from benign to malignant conditions,

cells undergo changes in gene regulation. To reveal state-

dependent circuitries in human regulatory networks, we

employed drafts of normal and malignant cell networks. Using

these condition specific networks, gene profiles and annotated

pathways we studied: a) the capacity to separate samples or cell

states based on the collective expression of all the genes in each

pathway rather than individual genes, b) the degree of

regulatory network connectivity within and between pathways.

Distinct cell types reveal notable differences in transcriptional

activity in numerous pathways. On the other hand, in datasets

from breast cancer patients with variable outcome the capacity

of single pathway expression signatures to predict disease

outcome is very limited, though this can be somewhat improved

by combining multiple pathways. Remarkable connectivity

between pathways on the transcriptional regulatory level

revealed a non-modular network structure. Overall, network

blueprints enable us to quantify the degree of interaction

between condition specific co-regulated pathways. This can

contribute to understanding deregulated processes associated

with cancer.

I. INTRODUCTION

he study of mammalian transcriptional regulatory networks

based on high throughput gene expression data has primarily

focused on the identification of individual differentially

expressed genes, co-regulated gene sets and genes with

inferred functional similarity. Investigators have identified

functional modules from gene expression data using a

reverse-engineering approach to reveal regulatory subunits,

based on probabilistic graphical models [1], singular value

decomposition [2-4] and network component analysis [5].

Methodologies for reconstructing and inferring elements of

genetic and metabolic networks [1, 6-11], identifying new

gene modules [12-14] and statistically characterizing

topological network features are the focus of much research

[15-19], especially for model organisms. Recent advances

in network analysis have focused on topological changes and

static and dynamical network properties in yeast and E coli

[20-22].
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In previous work [23] we constructed initial drafts

of human transcriptional regulation networks of normal and

cancer cells in order to study:

a) the dispersion or localization in the network either of gene

sets that yield near optimal classification; if these genes are

concentrated in focal regions rather than spread over the

entire network, this may suggest strategies for intervention

not apparent from study outside of the network context.

b) the use of network features to identify sub-networks that

exhibit differential regulatory activity. We examined

whether the combined expression levels of central genes are

sufficient to characterize the cell state. Additionally, we

introduced an approach to utilizing network structure to

classify samples, in terms of transcription factor-target gene

activities rather than gene expression profiles, which allows

the identification of key differential activity of transcription

factor-gene pairs. In this work we first explore the extent to

which the composite expression signatures of gene pathways

distinguish between different cell types or cancer cells from

patients with different clinical outcome as an extension to

work done by Stolovitzky et al [24] and us [25]. We then

examine how gene sets defined by pathways spread or

cluster in terms of their geodesic distances in the regulatory

network. Finally, we define condition specific transcriptional

interaction between each pair of pathways by identifying

transcription factors (TFs) that activate or suppress members

in both pathways in this specific state.

II. MATERIALS AND METHODS

A. Microarray datasets

1. Distinct normal cell types: Affymetrix U133 chip mRNA

expression data of 10 resting neutrophil and 19 resting

monocyte samples obtained from normal individuals [25].

2. Distinct tumor types: comparing acute lymphoblastic

leukemia (ALL) to acute myeloid leukemia (AML) [26].

3. Tumors versus normal tissues: Affymetrix U133A and

U133B chips of 9 renal cell carcinoma samples and matched

normal samples [27].

4. Tumors with variable clinical outcomes: Hu25K

oligonucleotide and U95Av2 Affymetrix datasets from

studies of predictors of clinical outcome in breast cancer [28,

29].

5. Ectopic production of oncogenes: Affymetrix Mu11K

arrays of 55 quiescent mouse embryo cell sample and cells

over-expressing Myc, Ras, E2F1, E2F2 or E2F3 [30].

B. Simultaneous array and gene normalization

We applied a bi-normalization procedure which has been

extensively described in previous work, and has led to clean

separation between distinct cell types [25, 31].
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C. Connectivity network

The human and mouse connectivity networks are derived

from a combination of high quality literature references

(documented in the professional version of the TRANSFAC

Database) and predictions based on matching known and

putative transcription factors consensus binding sites

sequences with the 1kb (or 5kb) upstream promoter regions

of all human and mouse genes stored in Goldenpath

(http://genome.ucsc.edu/). We used the default parameters of

the MATCH algorithm (provided by TRANSFAC) and a

minimal score of 0.85 as a threshold to define direct

regulation connectivity between a transcription factor (TF)

and a gene. The information is stored in a rectangular

adjacency matrix, in which regulating TFs are represented by

column indices and regulated genes by row indices. The

elements of the matrix Cij are assigned a value of one if

transcription factor j directly regulates gene i. If not, the

elements are assigned a value of zero. We arranged the rows

of this matrix such that the regulated genes in the first rows

are TF genes. Furthermore, the order of the TFs across these

rows is equivalent to their order across the columns. Thus,

the upper square block of the matrix C consists of the TF

regulatory network, and its non-zero diagonal terms Cii
correspond to self-regulation.

D. Co-expression networks

Some of the “noise” in the connectivity regulatory

network is due to false positive predictions of the putative

TF-gene relationships. To reduce the noise we constructed

two types of co-expression networks for each dataset and

intersected each of them with the connectivity network. The

correlation across conditions co-expression network was

constructed by computing the correlation across all samples

between each TF-gene pair in the connectivity network. We

then transformed this matrix to a binary matrix eij by

substituting one for any entry with an absolute correlation

coefficient larger than 0.3 and zero otherwise. The condition

specific co-expression network was constructed as follows:

for each condition (column) of the bi-normalized matrix we

computed the outer product between the absolute value of

this vector multiplied by the sub-vector corresponding to the

transcription factors. This outer-product gives rise to a

matrix denoted by Eij that has the same dimensions as the

connectivity matrix Cij. Each element of Eij is the product of

the absolute value of the bi-normalized gene expression i

with the bi-normalized TF expression j. The elements of Eij
are then binarized using 1 if they are larger by a standard

deviation from the mean product and 0 otherwise. A nonzero

element in this binary matrix indicates that the expression

level of the TF is up-regulated and the absolute value

expression level of the gene (potentially activated or

suppressed by this TF) is up-regulated or down-regulated.

For each sample in each class we calculated these binary co-

expression matrices (which can be individual co-expression

ma. We then added up these binary matrices for each

specific condition and replaced each entry in the resultant

matrix by one if it is nonzero in at least 1/3 of the binary co-

expression matrices of this condition and by zero otherwise.

Finally, we used the intersection between the condition

specific co-expression matrix and the connectivity matrix to

form the condition specific (CS) regulatory network

represented by the adjacency matrix Aij= CijEij. Similarly,

the intersection between the correlation across conditions co-

expression matrix and the connectivity matrix, represented

by the CAC adjacency matrix aij= Cij eij, gives rise to the

links of the regulatory network that vary in coordinated

fashion across more than one biological condition.

E. Geodesic gene-gene distance

The proximity of groups of genes (corresponding to a

pathway, a near optimal classification multivariate or the

central genes in the regulation network (hubs)) is determined

by the particular distance measures we used. The most

straightforward distance measure we used on the directed

graph representing the regulatory network is the geodesic

distance. The geodesic distance between a gene-TF pair

(genei-TFj) is 1 if the corresponding entry in the adjacency

matrix is one (Aij=1). A pair of genei-TFj whose Aij=0 could

be indirectly connected in the regulatory network via other

transcription factors regulated by TFj. To find these indirect

connections we reorganized the matrix Aij such that its upper

square block, defined by Tij, consists of transcription factor

pairs (TFi-TFj) only. If an entry of the adjacency matrix Aij
is zero but the same entry of (AT)ij is nonzero the geodesic

distance between genei and TFj is 2. Similarly, if the entries

of (AT
m
)ij for all m=0,..,n-1 is zero and the corresponding

entry (AT
n
)ij is nonzero the genei-TFj geodesic distance is

n+1. Thus, the geodesic distance between a given

transcription factor and a gene is the shortest directed path

between them, i.e., the smallest number of arcs connecting

them. A pair of non-regulating genes has an infinite geodesic

distance, because there is no directed path in the regulating

network, which connects these genes. To define a distance

between any pair of genes, whether any of these genes is a

transcription factor or not, we identify an “ancestor”

transcription factor in the regulatory network, whose sum of

geodesic distances to both genes is minimal. If one or two of

the genes of a given pair is a transcription factor, the gene-

gene distance of this pair is defined by the either the shortest

directed path between them or the gene-gene definition

above, whichever is smaller.

F. Annotated Pathway Data

The Biocarta database was originally extracted from the

caBIG repository (http://cgap.nci.nih.gov/Pathways) and

data from the KEGG database

(http://www.genome.ad.jp/kegg) extracted from our internal

database management system, GeneCube. Linking of

mouse–human pathways were provided by linking data from

HomoloGene (http://www.ncbi.nlm.nih.gov/HomoloGene).

G. Combining Transcription Factor-Target Gene Binding

Network and Gene Co-expression Networks

We constructed networks by intersecting a predicted and

literature-based connectivity binding network (using

TRANSFAC [32, 33] and in specific examples additional

array based protein-DNA binding location analysis (ChIP-

on-chip)) with two types of co-expression networks:
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condition specific (CS) network and correlation across

conditions (CAC) networks. These co-expression networks

were drawn from three types of microarray datasets, using

publicly available data, including those derived from normal

cell lineages [25], tumors versus normal tissues [27], and

disease-specific tumors associated with variable clinical

outcomes [28, 29]. The links in the CAC networks represent

TF-gene pairs whose expression profiles are correlated

across all states considered, i.e., if a TF is over-expressed its

target genes are also over-expressed and vice versa, if

inversely correlated. CS networks represent TF-gene pairs

that are co-expressed in one state or more. Transmission of

information or transcriptional control within these networks

is state-dependent [20, 21]. This is partially reflected by

changes in the stimulatory or inhibitory activity of specific

links in the regulatory networks, which can lead to altered

distances between genes.

B. Scattering of pathway genes in the regulatory network

We examined distributions of distances (the

number of links needed to traverse the path between each

pair of genes) in the CS and CAC networks for gene subsets

that belong to the same pathway. To explore these distance

maps in a simple mammalian system caused by single

oncogene perturbations, we used available datasets for

ectopic over-expression of RAS, Myc, E2F1, E2F2 or E2F3

in mouse embryo fibroblasts [30, 34]. We examined all

pathways in which these genes were known to participate.

We found that the collective expression patterns of each

E2F-related pathway clearly separated the samples. Similar,

though less pronounced, results were obtained with Myc and

Ras pathways. In addition, genes separating parental from

Ras perturbed cell lines identified by supervised machine

learning approach are located in close proximity on the CAC

or CS networks (Fig. 1).

Fig. 1. Distance map of the sub-regulatory network containing

genes separating normal fibroblasts from fibroblasts perturbed with ectopic

RAS expression. The geodesic distances between a pair of genes in the sub-

network containing these separating genes and all the TFs connected to

them directly or indirectly are displayed in the left distance map (panel 1).

The distances are color coded in the bars to the right of these maps (values

greater than 6 represent disconnection, and in rare cases, long geodesic

distances). These separating genes are much closer to each other than

random sets of genes as shown in panels 2-4. Thus, genes that separate

between normal and RAS perturbed fibroblasts tend to localize in the CAC

regulatory network when compared with a random, same-size gene sets.

C. Pathway based classification

Next, we assessed whether the collective gene

expression patterns of individual pathways could be used to

classify samples, and studied the proximity of genes in these

pathways in the regulatory network. The KEGG and

Biocarta databases present catalogs of groups of genes,

classified according to their linkage in known pathways

including those for small molecules. We utilized each of the

137 pathways described in KEGG and the 245 networks

listed in Biocarta. We employed a partial least squares (PLS)

analysis to compare distinct cell types such as neutrophils to

monocytes [25] and normal to malignant kidney cells [27].

The combined expression profile for many pathways reveals

perfect separation. A small number of pathways (including

complement and coagulation cascades, MAPK and integrin

pathways) classified AML from ALL with a cross-validated

error rate of 8%-12%. We tested the effect of combining the

top 5 separating pathways and observed a reduction of the

error rate to 4%. For datasets that are more difficult to

classify, such as breast cancer cohorts with variable clinical

outcome [28, 29], linear discriminant analysis, PLS and k-

nearest neighbor classifiers of the combined expression

patterns for pathways in these datasets, led to, at best,

classification errors of 21 % for the Duke breast data and

40% for the Dutch breast data.

Here we analyzed data with variable degrees of

difficulty in classification, the extreme being breast cancer

patients with different clinical outcomes. For these data there

is a corresponding difficulty in identifying distinguishing

pathways. However, specification of the pathways activated

in different cell types or different tumors is useful for

understanding tumor biology, as shown by Segal et al [1],

who characterized entirely different cancers by aggregates of

pathways. The combined effect of these "differentially

expressed" pathways is a statistical observation.

D. Transcriptional interaction between pathways

To understand transcriptional communication

between pathways and identify their common regulators, we

explored inter- and intra-pathway regulatory connections.

We first prepared a pathway-by-gene matrix that indicates

which genes belong to each pathway and multiplied it by the

condition-specific regulatory network (TF-target gene

matrix) to construct a TF-pathway matrix (Fig. 2a). Each

element in this TF-pathway matrix counts the number of

links between the corresponding TF and pathway (Fig 2b).

We defined an inter-pathway interaction matrix (Fig. 2c),

taking into account coordinated expression in a specific

condition as well as the connectivity, whose entries represent

estimates of interaction strength between any pair of

pathways: the higher the score, the stronger the shared

regulatory relationships between the two pathways (Fig. 2d).

Examples of pathway pairs with strong interactions (in red,

Fig. 3) in the Dutch breast dataset were the p53 and Rb

pathways. This is primarily mediated by the fact that E2F1

and EGR1 regulate different genes in both pathways. For

these data we show (histogram, Fig. 4) that a substantial

proportion of pathway pairs share common network

regulators. We also studied intra-pathway connectivity. Not

surprisingly, we found that the effective gene–gene

regulatory distance between members of numerous

individual pathways is smaller than the effective distance of

random equal-sized groups of genes for both CS and CAC in

all categories of microarray experiments. For instance, the

shortest gene-gene network distances for 83 out of the 369

pathways of the neutrophil/monocyte dataset are found

significantly more frequently than in random gene sets.
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Fig. 2. Pathway-pathway interaction map. We define the strength of a

regulatory pathway-pathway interaction by the number of links between a

pair of pathways via common direct regulators of the pair. To derive the

pathway-pathway interaction map on the right hand side of equation (c), we

first construct the TF-pathway matrix (equation (a), right side) obtained

from multiplying the pathway-gene matrix by the adjacency gene -TF

matrix. Each row in the pathway-TF matrix represents a different pathway

and each column represents a TF. The first column of this matrix represents

the number of direct targets of the first TF to each of the pathways, as

illustrated in (b). In the second step we multiply the TF-pathway matrix by

its transposed matrix to obtain the pathway-pathway interaction map (c).

For example the interaction strength between pathway 1 (1st row or

column) and pathway 4 (4th column or row) is equal to three, as illustrated

in (d). The entries in the pathway-pathway map are the number of

trajectories via their common regulators. To account for pathway size we

normalize each of these scores by dividing them by the corresponding

product of the number of genes in each pair of pathways. Because some

pathways share common genes, the scores for these pathways excluded the

contribution from these shared genes.

Analysis of genome-wide expression data in the

context of networks is not merely descriptive, but can offer

insight into biological processes. This view allows us to

inspect how sub-networks associated with various biological

pathways differ between normal and cancer cells or between

good and poor prognosis patients. For instance, many of the

genes implicated in recurrence in breast cancer in the Dutch

study [29] are regulated directly by E2F1, a transcription

factor that plays a well established role in cell cycle

progression [35], or by other TFs that are targets of E2F1.

We found that distinct cell types can be easily

separated by collective expression profiles of pathways or by

genes identified by supervised learning. We conclude that

differences between these distinct cell types are so pervasive

that it is hard to implicate a small number of characteristic

biological processes. Mathematically, this can be explained

by the fact that the rank of the data matrix is very low – on

the order of magnitude of the number of cell types we are

trying to partition. We note that in metabolic networks, flux

analysis in E. coli reveals that changing conditions led to

altered flux only in a few metabolic pathways [9]. In the

mammalian cell datasets we studied, many pathways have

distinct levels of activity between the cell types or states.

Whether this represents a general effect in multi-cellular

organisms or whether it is particular to the type of

perturbation or change in state warrants further examination.

Fig. 3. Pathway-pathway interaction map for the Dutch breast cancer data.

Red spots represent pathways with high regulation commonality, and blue

represents low regulation commonality. For example: the Erbb4 and Rb

pathways share common regulators in the CS recurrence network, as do the

Erbb4 and cell cycle pathways, and the map indicates that their pathway-

pathway interactions scores are relatively high.

Fig. 4. Pathway-pathway log interaction scores in the Dutch recurrence

network reveal strongly connected networks of pathways. Many pairs of

pathways share common regulators.

III. CONCLUSION

In this work we showed that distinct cell types

reveal notable differences in transcriptional activity in

numerous pathways. On the other hand, correlation (or

classification) of disease outcome with single pathway

expression signatures, which in principle allows biological

interpretation, is limited. The remarkable connectivity

between pathways on the transcriptional regulatory level can

have important practical implications for further research on

cell modularity and interventions for cancer control.
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Despite the limitations of the currently available

data, these initial networks already enable us to find key

regulators of deregulation within the regulatory network.
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