
 
 

  

Abstract—This paper reports a preliminary investigation 
to evaluate the significance of various nonlinear dynamics 
approaches to analyze the heart rate variability (HRV) signal in 
children with sleep disordered breathing (SDB). Data collected 
from children in the age group of 1-17 years diagnosed with 
sleep apnea were used in this study. Both short term (5 
minutes) and long term data from a full night 
polysomnography (7-9 hours) were analyzed. For short term 
data, the presence of nonstationarity in the derived HRV signal 
was determined by calculating the local Hurst exponent. 
PoincarK plots and approximate entropy (ApEn) were then 
used to show the presence of correlation in the data. For long 
term data, the derived HRV signal was first separated into 
corresponding sleep stages with the aid of the recorded sleep 
hypnogram values at 30 seconds epochs. The scaling exponents 
using detrended fluctuation analysis (DFA) and the ApEn were 
then calculated for each sleep stage.  

Data from two sample subjects recorded for different sleep 
stages and breathing patterns were considered for short term 
analysis. Data from 7 sample subjects (after sleep staging) were 
considered for long term analysis. The accuracy rate of ApEn 
was about 72% for both long term and short term data sets. 
The accuracy rate of Alpha (α) derived from DFA for long 
term correlations was 57%. Further work is necessary to 
improve on the accuracies of these useful nonlinear dynamic 
measures and determine their sensitivity and specificity to 
detect SDB in children. 

I. INTRODUCTION 
variety of respiration abnormalities that could occur 
during sleep are called sleep disordered breathing 
(SDB). Obstructive sleep apnea syndrome (OSAS) is 

the most common type of SDB. In OSAS, sleep is 
interrupted by repetitive pauses in breathing due to the 
collapse and/or blockage of the upper airway with a 
concurrent reduction in blood oxygen saturation (SaO2), 
causing an arousal from sleep to breathe. This is called an 
apnea or apneic e*ent. A person suffering from OSA will 
have a large number of apnea events during a full night sleep 
[1]. 

In children as in adults OSAS is also characterized by 
upper airway obstruction that occurs during sleep. Apnea 
and hypopnea events are complete or partial blockage of the 
airway during sleep, respectively. These lead to a fall in 
SaO2. Apnea and Hypopnea index (AHI) denotes the 
average number of apnea or hypopnea events that occur per 
hour during sleep. An AHI of less than 5 per hour is 
considered to be normal in adults. However, in children the 
number of events that occur per hour is less than that in 
adults. So, the standard criterion does not hold for children. 
Sleep labs consider 1 event per hour as abnormal for 

children. An apnea/hypopnea event is taken into 
consideration if it lasts for more than 10 seconds irrespective 
of subject’s age. Consequently in children, if the event lasts 
for 2 or more breaths or less than 10 seconds, it is considered 
as an apnea/hypopnea event [2].  

During sleep or rest, there is an increase in 
parasympathetic and an opposing decrease in sympathetic 
activities of the nervous system. During apneic events there 
is a drop in SaO2. This fall in oxygen level leads to an 
increase in the heart rate. Studies have shown that there is an 
increase in sympathetic activity during OSAS [3]. 

Different research groups around the world have 
performed extensive research using various analytical tools 
to detect OSA in adults. However, there is no substantial 
research in detection of pediatric OSA condition using 
nonlinear dynamic methods. In this study we used data 
collected from children to show whether nonlinear dynamic 
methods deployed for analysis of adult data are equally 
applicable to analyze pediatric data. 

Nocturnal polysomonography (NPSG) is considered as a 
gold standard for detecting sleep apnea. However, nocturnal 
polysomnography tests are expensive (costing $2000 – 
$4000) and the number of sensors and wires attached to the 
body makes it extremely uncomfortable to have a good 
night’s sleep. The easily accessible and relatively 
inexpensive electrocardiogram (ECG) signal was used to 
extract suitable nonlinear dynamic measures of HRV signal 
to detect sleep apnea in children. 

It is well established that all physiological signals are 
nonlinear and nonstationary in nature. This nonstationarity 
in the signals can be detected using fractal theory.  

The objective of this paper was to extract various 
nonlinear dynamic measures from both short term and long 
term HRV signals to explore whether these measures could 
prove useful and provide fairly accurate indices to detect 
SDB, specifically OSA from ECG signals in children. 

 
II. MATERIALS AND METHODS 

,- Polyso2no3rap4y 5ata 
Prerecorded data collected from children undergoing 

NPSG in the Adelaide’s Women’s and Children's Hospital 
(Sleep Disorder Unit) for suspicion of SDB. We used data 
from 2 subjects for short term and 7 subjects for long term 
analysis. ECG data were sampled at 500 Hz and digitized 
with a resolution of 16 bits/sample. For short term analysis, 
data used were 2-5 minutes in duration. The sleep data for 
long term analysis were from 7-9 hours in length 
(corresponding to a normal average sleep time for a child). 
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ECG data were resampled at 360 Hz for extraction of the 
HRV using an enhanced Hilbert transform method [4].  

It has been speculated that analysis of HRV signal based 
on nonlinear dynamics methods might supply valuable 
information for physiological interpretation of this signal [5, 
6]. In our work, we deployed approximate entropy, Poincaré 
plots and fractal exponents using singularity spectra to detect 
short term correlations. Approximate entropy, DFA and 
Poincaré plots were used to detect long term correlations in 
the data.   

6- ,ppro7i2ate Entropy 

Approximate Entropy (ApEn) is a “regularity statistic” 
used to compute the unpredictability of fluctuations in the 
heart rate time series [5]. The presence of repetitive 
fluctuation patterns in a time series makes it more 
predictable than a time series in which repetitive patterns are 
absent. ApEn shows the likelihood that a repetitive pattern is 
not followed by other repetitive patterns. A time series that 
has higher ApEn value is less predictable than one with a 
lesser ApEn which contains more number of repetitive 
patterns. ApEn was calculated as a robust quantitative 
descriptor of the degree of regularity of HRV signals [5]. 

9- Poincar: Plots 
Poincaré plots are effective visualization tools for HRV 

signal analysis as they display the nonlinear aspects of the 
signal. In a Poincaré plot, the value of each interval is 
plotted against its successive interval. The results are 
quantified by using the ellipse fitting technique. Statistically 
the Poincaré plot displays the correlation between its 
successive intervals in a graphical manner. In nonlinear 
dynamics, it is the 2D reconstruction of the RR interval 
phase space, which is a projection of the reconstructed 
attractor that displays the dynamics of the heart rate 
variations [6]. The points appear as an elongated cloud of 
points. The points that are perpendicular to the line of 
identity are said to indicate short-term variability of the 
HRV signal. Given by, 

)1()0(2
1 RRRR<5 φφ −=   (1) 

where, RRφ  is the auto-covariance function of the RR 
intervals and <5= is the standard deviation along the axis 
perpendicular to the dispersion of the points. The long-term 
variability is the dispersion of points parallel to the line of 
identity, given by 

)1()0(2
2 RRRR<5 φφ +=     (2) 

<5> is the standard deviation along the axis parallel to the 
dispersion of the points in the Poincaré section. This 
approximation of the auto-covariance function is done 
assuming that the RR intervals are stationary in nature. The 
assumed axis for the Poincaré cloud is rotated by π/@ radians 
[6].  

5- 5etrended Fluctuation ,nalysis 
Detrended Fluctuation Analysis (DFA) is used to detect 

long-term correlations in a seemingly non-stationary data. 
This method is a modified root-mean-square analysis of 
random walk, which quantifies the presence or absence of 

fractal correlation properties and has been validated for time 
series [7]. DFA provides the long-range correlations in a 
time series. The details of DFA calculations are described 
elsewhere [8].  

E- <in3ularity <pectra Dsin3 Ea*elet TransGor2 
Physiological signals especially HRV are multi-fractal 

signals that require a larger number of indices to characterize 
their scaling properties. The sharp signal transitions create 
large amplitude wavelet coefficients. Singularities are 
detected by following the local maxima across various time 
scales [9]. The singularities of a multi-fractal signal vary 
constantly and the distribution of these singularities is 
important for analyzing the signal. The modulus maxima 
method can be used to calculate the singularity spectra to 
check the multi-fractal scaling of the physiological data [10]. 
To calculate the singularity spectrum D(α), the wavelet 
transform of the signal EG(uIs) has a sequence of modulus 
maxima that converge towards v at fine scales. The 
calculation can be summarized as follows: 
1. Compute the continuous wavelet transform EG(uIs) and its 
local modulus maxima and chain the transform at each scale. 
2. Compute the partition function Z(qIs) that measures the 
sum at a power q of all these wavelet modulus maxima. This 
partition function eliminates all maxima lines that do not 
propagate to the finest scales in the calculation of Z(qIs)- 

!= qsuEGsqZ |),(|),(      (3) 

3. The scaling exponent )(qτ  measures the asymptotic 
decay of Z(qIs) at fine scales s, it is computed with a linear 
regression of ),(log2 sqZ as a function of s2log : 

)(log)(),(log 22 q9sqsqZ +≈ τ   (4) 
4. The singularity spectrum is calculated by computing the 
Legendre Transform of )(qτ  given by, 

))()2/1((min)( qq5
q

ταα −+=
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  (5) 

D(α) is plotted to obtain a convex spectrum [9]. The local 
Hurst exponent that is calculated from the convex singularity 
spectrum indicates the long range dependency embedded in 
a time series. For a healthy human heart, the Hurst exponent 
lies in the range of -0.1 to 0.5. For unhealthy human heart, 
there is a significant loss of the multi-fractal complexity by 
displaying a smaller range of h [11]. The Hurst exponent 
determined in this case was the point where q crosses zero. 
In the singularity spectra, qMN where D (α) is the maximum 
[9]. The singularities were determined using the WaveLab 
Software [12]. 

F- Onte3rated HRQ <i3nal ,nalysis En*iron2ent 
An integrated signal processing environment comprised of 

time-domain, frequency-domain, and nonlinear dynamic 
methods discussed above was developed to analyze the heart 
rate variability (HRV) signal. The signal processing 
algorithms and graphical user interface (GUI) were 
developed in Matlab 6.5 and LabVIEW 7.0, respectively. 
This environment enables the user to browse and select the 
desired length of ECG signal to be analyzed and perform 
various analyses by click of a button. The front panel of the 
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environment displays all the graphs and numerical 
parameters obtained and the user is presented with a report 
with the summary of all the analyses which can be saved or 
printed for future reference. Fig. 1 shows this GUI. 

In designing the components of the GUI, we carefully 
considered their functional use and observed principles of 
consistency based on end-user feedback. This GUI makes 
the end-user feel competent [14]. Complex signal processing 
tasks are easy to perform and visualize for the sleep 
specialist. The GUI is easy to read due to it highly visible 
clarity. The GUI is efficient and simple to use, easy to 
remember, and errors are easy to recover from the software 
environment. The GUI is esthetically pleasing. It 
demonstrates high quality and clear graphics due to attention 
to detail and emphasis on salient features. 

III. RESULTS AND DISCUSSION 
The HRV signal analyses were carried out on the two 

different lengths of data: Short term data, 5 minutes in 
duration and long term data, a complete sleep cycle (ranging 
from 7-9 hours).  The short term data were acquired from 
two children aged 10 years and 11 months, and 3 years and 8 
months. Approximate entropy and singularity spectra were 
determined to detect multi-fractals in the data. Poincaré 
sections and continuous wavelet transforms were used as a 
visual display tool to show any non-stationarities in the 
given datasets.  

The long term data were complete nocturnal sleep data 
with the corresponding sleep hypnograms from seven 
children with demographics shown in Table 1.  

 
TABLE I 

DEMOGRAPHIC INFORMATION ON SAMPLE SUBJECTS. 
HRV File Sex Age BMI Weight Status 

HRV002 M # year #(.* +ormal 

HRV003 M #yr  / mo #0.1 2nderweight 

HRV004 : 1 yrs # mo #0.0 2nderweight 

HRV005 : #0 yrs * mo *<.* Obese 

HRV007 M 0 years ? mo #1 2nderweight 

HRV008 : / years @ mo <1.* Overweight 

HRV009 M #@ years 1mo ?*.# Obese 

The data were segmented according to the sleep 
hypnogram graph that consisted of 30 second epochs of the 
sleep stages. The sleep stages in the hypnogram were NREM 
Sleep Stages ‘1’ and ‘2’ (light sleep), ‘3’ and ‘4’ (deep 
sleep), REM Sleep Stage and Wake Stage. The Sleep Stages 
were divided into 4 stages instead of 6, namely Light Sleep, 
Deep Sleep, REM Sleep and Wake Stage. DFA was used to 
perform scaling analysis. The value Alpha (α) was also 
determined from DFA. 

For short term and long term data, Poincaré plots were 
used to show the correlations of the RR intervals. The ellipse 
fitting technique was used for short term data and not for 
long term data, as the ellipse could not fit larger data points 
efficiently. The ellipse fitted to short term data shows short 
term and long term variations in the HRV. A broader ellipse 
shows short term variation and a longer ellipse shows long 

term variation in the HRV data.  Poincré plots also proved 
very helpful in visualizing the presence of any artifacts in 
the data.  

,- <4ort Ter2 5ata 
Short term correlations were calculated from HRV data 5 

minutes in duration. Two data sets were considered with 
apnea events. The singularity spectrum was obtained from 
sample data segmented with respect to presence or absence 
of apnea events that occurred during REM and NREM sleep 
stages. The data fort the male child (age 3 years and 8 
months) were used for Figs. 2 and 3. The ApEn and the 
Hurst exponents for different sleep states are shown in Table 
2. The sleep stage with apnea events has a comparatively 
lower ApEn and local Hurst Exponent. 

 
TABLE 2 

THE APEN AND THE HURST EXPONENST OF DIFFERENT SLEEP 
STATGES. 

<leep <ta3e ,pEn Hurst E7ponent 

NREM Sleep 1.2613     0.4254 

REM Sleep 1.2787     0.4390 

REM Sleep with Apnea events 0.8779 0.2220 

The specificity, sensitivity and accuracy of the ApEn were 
calculated for the two sample data sets. The sensitivity was 
calculated to be 67%, specificity was calculated as 78% and 
the accuracy for ApEn for short term correlations was 73%. 

In Fig. 3, both the ApEn and Hurst Exponents show the 
presence of apnea events of 10 or higher. Using the Wavelet 
Transform Modulus Maxima Method (WTMM) shows the 
loss of multifractal scaling. The Hurst Exponent calculated 
from the singularity spectrum using WTMM shows a low 
value [Table 1]. The small value of the Hurst Exponent and 
the narrow singularity spectrum signify a loss or degradation 
in the correlation of the signal. This breakdown or loss in 
fractal dynamics is due to uncorrelated randomness in the 
signal [10].  

6- Ron3 Ter2 5ata 
The demographics of subjects used for long term 

correlation calculations are given in Table 1. The full 
overnight ECG data were analyzed for these subjects. The 
corresponding sleep hypnograms were recorded at epochs of 
size 30 seconds. The sleep hypnogram divides the sleep 
record into REM, NREM and Wake stages. The NREM 
stages are 1, 2, 3 and 4. The sleep hypnogram was slightly 
modified to differentiate it as light (NREM stages 1, 2), deep 
(NREM stages 3, 4), REM and Wake stages. Assigning 
different amplitudes for each stage plotted the modified 
hypnogram. See Fig.4. 

DFA was performed for each sleep stage and the value of 
α was calculated for each stage for all the available data sets. 
The Hurst Exponent is related to α  by α = 1 + h. The 
Apnea/Hypopnea index (AHI) was calculated for all the 
sample data sets for specific sleep stages. The total number 
of apnea and hypopnea events that occurred during each 
sleep stage was recorded and divided by the length of each 
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sleep stage calculated in hours [13]. The subjects were 
considered to have apnea if the AHI was greater than 3.0.  

 The Alpha indicator for a high AHI was considered to be 
anything less than 1.0. For all values of Alpha greater than 1, 
the time series is said to be smooth [10]. The ApEn indicator 
was calculated based on the data length, the overall mean 
and standard deviation. The higher ApEn in a time series 
reflects a lesser predictability than a lower ApEn. All ApEn 
values greater than 0.9 corresponded to a high AHI value.  

The accuracy for the Alpha exponent was calculated to be 
57%. The sensitivity was 67% and specificity was calculated 
to be 47%. Two of the HRVs that were used to calculate the 
specificity and the sensitivity had more than 90% negatives 
as compared to other sample data sets, dropping the overall 
accuracy of the Alpha exponents. The low specificity shows 
that the signal has a very high number of false negatives.  

The accuracy of the ApEn values determined from the 
long term sample data sets was 73%. The sensitivity was 
calculated to be 89%. However, the specificity was a low 
57%. 

V. CONCLUSIONS 
 
The analysis of the HRV signal using nonlinear dynamic 

measures obtained from the pediatric data set is comparable 
to results published for adults. This indicates the fairly high 
accuracy rates for ApEn and also the small local Hurst 
exponent values for short term data sets. The smaller apnea 
events and the higher heart rates in children were 
successfully detected by using the ApEn. The Hurst 
exponent and the DFA resulted in an accuracy of 57%. The 
low specificity value for all calculated parameters is an issue 
that requires further investigation in pediatric sleep research. 

Non-linear dynamics analyses were carried out on short 
term and long term data lengths to evaluate the significance 
of short term and term correlations on the data. The DFA 
showed an accuracy of 57%, it did not fair as well as the 
ApEn that provided an accuracy rate of 73%. Even though 
DFA showed a low accuracy rate, it is a very powerful tool 
to detect non-stationarites in the signal. The reason for the 
low accuracy rate of DFA compared to ApEn is due to the 
segmentation of the sleep data from the corresponding sleep 
hypnogram. The method used in this case was basic 
thresholding to eliminate any artifacts from appending the 
sleep stages from its corresponding hypnogram. A more 
robust method is required to segment the NPSG data for 
sleep stages. This method should be able to remove sleep 
stages that occurred for a short interval of time and eliminate 
the artifacts that are created from appending various sleep 

stages. These factors could help improve the accuracy of the 
DFA analysis.  

More in-depth methods in using the powerful wavelet 
transforms for detecting multifractals in the signal need to be 
explored. Initial results as shown in Fig. 3 prove to be 
promising and the calculated Hurst exponents have given us 
some insight into the presence of apnea events in the data.  

The shift of αmax for the data set with apnea events 
compared to that with normal breathing could be used as an 
indicator of the presence of apnea for a given number of 
apnea events in the sample data set. More detailed analyses 
need to be performed to address following issues: 1). The 
ideal length of the data (both short term and long term) to be 
analyzed; 2). The length of the scales for different data 
lengths; 3) The type of analyzing wavelets to be used and; 4) 
Other parameters that could be derived to detect any 
breakdown in the multifractality of the data.  
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Fig. 1.  Analysis of a child’s HRV data with normal breathing during non-rapid eye movement NREM stage 4 sleep. 
 

 

 
Fig.2. Continous wavelet transform, fractal scaling exponent, singularity spectra and Poincaré section for a sample data set with length 5 minutes (3 years 
and 8 month old male child). 
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Fig. 3: The fractal scalar exponent and the singularity spectra plotted for REM, NREM and REM with apnea events. The normal sleep stages give a broad 
spectrum whereas the stages where there is apnea, the spectrum gives a much narrower range for the values of the Hurst exponents. 
 

   
  

     
 
 
 

      
Fig. 4: Sleep Hypnogram, DFA and Poincaré sections for sample long term data collected from a female child, 6 yrs and 1 month old, during overnight 
sleep. 
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