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Abstract—Learning and memory rely on the strict regulation 
of communication between neurons in the hippocampus. The 
mossy fiber (MF) pathway connects the dentate gyrus to the 
auto-associative CA3 network, and the information it carries is 
controlled by a feedforward circuit combining disynaptic 
inhibition with monosynaptic excitation. Analysis of the MF 
associated circuit using a mapped clock oscillator (MCO) 
model reveals the circuit to be a highpass filter. 

I. INTRODUCTION

HE hippocampus is a brain structure instrumental in 
learning and the formation of memories [1] [3]. The 

CA3 region of the hippocampus has prolific recurrent 
excitatory connections between pyramidal neurons that are 
putatively responsible for auto-associative memory storage 
and recall [2], [4]. The ongoing processes of forming and 
retrieving memories require the CA3 to have flexibility and 
selectivity in its synaptic communications. Activity within 
the network is modulated by external inputs from the dentate 
gyrus (DG), via the mossy fiber (MF) pathway, and from the 
entorhinal cortex, via the perforant path (PP) [4], [5].  
Research indicates that MF and PP inputs with the 
appropriate spatiotemporal encoding can effect both 
transient and long-term synaptic plasticity in the CA3 
network [4] [6]. In particular, granule cells (GC) from the 
DG have been shown to reliably detonate target cells in the 
CA3, essential for Hebbian learning and associative 
reinforcement (or depression) [3], [7]. Without input from 
the DG, learning in the CA3 is significantly impaired [8]. 
 One important feature of the MF pathway is that it 
extends its excitatory afferents onto both excitatory and 
inhibitory cell types, namely glutamatergic pyramidal cells 
(PC) and -aminobutyric acid (GABA) releasing 
interneurons (IN), respectively [7], [9] [11]. The ratio of 
GC-IN to GC-PC synapses is approximately 10:1 [9], 
suggesting a significant portion of the MF-CA3 network is 
devoted to inhibition. Not surprisingly, the majority of 
postsynaptic targets for GABAergic interneurons are 
pyramidal cells [11]. Given the large density of excitatory 
recurrent collaterals generating positive feedback amongst 

the pyramidal cell population in the CA3, the network is 
highly susceptible to hyperexcitability if unchecked [12], 
and is epileptogenic under pathological conditions [13]. 
Therefore, GC-PC synapses, known as mossy fiber terminals 
(which are characterized by giant boutons with multiple 
release sites), are balanced by a multitude of smaller, less 
potent GC-IN synapses, comprised of either en passant
terminals or filopodial off-shoots of the giant MF boutons 
[5], [7], [9], [10], [12], [14]. A network architecture 
naturally emergent from this arrangement of synaptic 
connections is the feedforward inhibitory circuit [12], [15], 
[16]. For the MF-CA3 pathway, feedforward inhibition 
involves a disynaptic pairing of two components: the 
excitatory GC-IN synapse and the inhibitory IN-PC synapse. 
When this disynaptic circuit is combined with a GC-PC 
terminal, the net result is an MF associated feedforward 
circuit capable of mediating CA3 pyramidal cell activity in a 
manner dependent on GC action potential (AP) firing 
frequency [12], [16].  
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 For this paper, we investigate the frequency dependent 
properties of the MF associated feedforward circuit using a 
nonlinear coupled-oscillator model to represent the network.

II. MODELING THE FEEDFORWARD CIRCUIT

The model proposed in this paper is a variant of the 
Mapped Clock Oscillator (MCO) model first proposed by 
Bardakjian [17] to simulate cellular electrical rhythms. The 
MCO is a hybrid system encompassing a dynamic core of 
nonlinear differential equations in phase, , and amplitude, 

, mapped to a static nonlinearity, y( , ), that generates an 
observable output (e.g. voltage). The static nonlinearity 
captures the salient features of cellular electrical waveforms, 
thereby reducing the complexity of the preceding dynamic 
stage. This approach is an extension of the Wiener linear-
nonlinear cascade [18] to a dual nonlinear cascade. 

The MCO model also incorporates input portals that 
accommodate internal network coupling as well as external 
stimuli [17], [19]. There are four categories of portals, each 
portraying a separate, lumped mechanism for coupling or 
stimulation: the -portal modulates the amplitude, 
simulating the effect of ion/ligand concentrations on cellular 
membrane processes; the -portal affects the rate of change 
of phase (which translates to neuronal firing rate), 
representing electric-field coupling or stimulation; the -
portal handles synaptic coupling, which changes the resting 
level and governs amplitude-to-firing-frequency encoding; 
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and the -portal portrays electrotonic coupling. To replicate 
the essential layout of the MF associated feedforward 
circuit, 3 labile MCOs  each representing a different class 
of neuron belonging to the circuit  were coupled 
synaptically as illustrated in Fig. 1. The labile MCO has the 
property of producing an observable output only when 
stimulated above threshold, whereas the conventional MCO 
generates a rhythmic output that is sustained in the absence 
of any input [19]. 

A. Oscillator Dynamics 
The dynamic equations of the labile MCO are presented 

here in polar form: 

GC

IN

PC

Fig. 1.  Schematic of the mossy fiber (MF) associated feedforward 
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circuit. The granule cell (GC) receives a DC input that stimulates it to 
generate a train of action potentials at a select frequency.  The 
excitatory GC output is directed to two postsynaptic targets: a 
pyramidal cell (PC) and an interneuron (IN). The interneuron 
completes the circuit with an inhibitory synapse onto the PC. 

(1)

(2)

where m = 1/3, n = 2, and k  = 103 s-1. Both  and  are 
dimensionless quantities, and  is bounded between 0 and 
2 . The intrinsic angular frequency,  (rad/s), is a constant 
that determines the unperturbed firing rate of the model 
neuron. S  is the input to the -portal, where  = { , , , 1,

2}, and is normalized to be dimensionless. S 1 = S 2 = 0 
because we do not consider electrotonic coupling in the MF 
associated feedforward circuit. R( ) is a refractory function 
of the highpass Butterworth type, with unity gain and a filter 
order of 4. Its cutoff is set to c = 4 /5, so that the oscillator 
remains insensitive to -portal inputs for the refractory 
portion of the cycle (  < c). The threshold function, v(x), is 
a sigmoid whose expression 

has parameters v1 = 30 and v2 = 0.5. Its dimensionless 
argument, x, combines inputs from the - and -portals:

with K and K  (V-1) as constants that weight the relative 
contributions of each input. The alpha-function, A(S ), is a 
function that transforms and integrates the -portal input in 
a fashion that mimics the electrophysiological action of the 
synapse. The alpha-function is written explicitly as 

         

and it has units of voltage. The time interval of integration is 
t t0 seconds.  (V·s-1) is a scaling factor, and a (s-1) is a 
constant controlling the time-dependent properties of the 
integrand.

The dynamic MCO elements are solved simultaneously 
using Gear’s method [20], a variable-step algorithm capable 
of integrating systems of stiff, nonlinear ODEs. 

B. The Static Nonlinearity 
The static nonlinearity maps the phase and amplitude to a 

measurable quantity, which in this case is the 
transmembrane voltage of the model neuron: 

a0 is the DC offset (approximate neuronal resting level), 
and W( ) is the intrinsic waveform. W( ) has no analytical 
expression; it is sampled from the time-dependent voltage 
profile of a cell-type’s distinctive action potential waveform, 
normalized as a function of phase only. Because the 
electrical waveform generated by a particular cell-type 
differs from that of another, the waveform is deemed to be 
intrinsic. The values of W( ) are derived from whole-cell 
patch-clamp recordings and stored in a look-up table 
referenced by phase values ranging from 0 to 2 .

C. Input Portals and Coupling 
The -, - and -portals take, as inputs, the outputs of 

MCOs via their static nonlinearities, as well as external 
stimuli. The algebraic expressions for these three portals 
feeding the n-th MCO in a network of M MCOs are as 
follows:  letting m = {1, 2, ... , M}and  = y( , ) a
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c ,mn is the coupling factor denoting the strength of the 
connection from the m-th MCO to the -portal of the n-th
MCO,  = { , , }.  The coupling factors have a range of 0 
(no coupling) to ±1 (full coupling), where the sign depends 
on whether the connection is excitatory or inhibitory. For the 
MF associated feedforward circuit, coupling values are 
listed in Table 1. S is the external input to the -portal.  is 

(9)
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a normalization factor and is the root-mean-square value of 
W( ) from (6);  =  /10. Amplitude-to-frequency encoding 
is made possible by the alpha-function term in (8), which is 
multiplied by an encoding constant, , that defines the firing 
frequency sensitivity of a neuron to synaptic inputs, and can 
assume values from 0 to 1. Finally, v(y) from (9) is a 
sigmoid of the form given by (3), and acts as a threshold 
function for screening out -portal inputs that are not 
considered action potentials, so that A(S ) only sums spikes. 

(a) (d) 

(e)(b)

(f)(c)

Fig. 2.  Role of the interneuron in the MF associated feedforward 
circuit. (a) Granule cell action potentials. (b) Pyramidal cell response 
to the excitatory drive from the granule cell in the absence of 
inhibition. (c) Non-biased pyramidal excitatory PSP train from the 
GC-PC synapse. (d) Limited bursting of the interneuron in response to 
granule cell excitation. (e) Pyramidal cell output resulting from GC 
firing with the inhibitory interneuron included in the feedforward 
circuit. Action potentials were completely suppressed. (f) Biphasic 
PSPs (non-biased) are recorded in the pyramidal cell combining the 
effects of both GC-PC (excitatory) and IN-PC (inhibitory) synapses. 

TABLE I
MF FEEDFORWARD CIRCUIT COUPLING FACTORS

n

1 2 3

 c 1 0 0.01 0.01
m 2 0.01 0 0.01

3 0.01 0.01 0
1 0 0.01 0.01
2 0.01 0 0.1

 c

III. RESULTS

The properties of the MCO simulated MF associated 
feedforward circuit were investigated by stimulating the GC 
through its -portal and observing the output of the circuit 
from the pyramidal cell.  

A. Feedforward Inhibition 
To ascertain the functional characteristics of disynaptic 

feedforward inhibition in the MF associated network, a pair 
of simulation runs was performed: one with the inhibitory 
interneuron deleted from the circuit, and the other with the 
interneuron connected in its proper place. In both instances, 
the granule cell was prompted to fire action potentials at a 
moderately low rate of 8 Hz. (Most GCs have firing 
frequencies below 1 Hz until strongly stimulated [16].) Fig. 
2 displays the results of the simulations. For the case in 
which the interneuron was removed, GC action potentials 
induced APs in the pyramidal cell, demonstrating 
unencumbered suprathreshold excitation. The PC 
postsynaptic potentials (PSPs), as generated by the alpha-
function in (5), were monophasic and excitatory. 
Conversely, GC firing did not invoke a single pyramidal AP 
when the interneuron was connected in the circuit, and the 
PSPs that were produced were biphasic with a pronounced 
hyperpolarization phase. 

B. Frequency Response of the Feedforward Circuit 
The frequency-dependence of the MF associated 

feedforward circuit was examined by varying the firing 
frequency of the granule cell between 0 and 50 Hz. This 

frequency range is within the physiological spectrum of the 
GC [7]. The variation was achieved by changing the 
oscillator’s intrinsic angular frequency,  (refer to (2)), a 
more direct and controlled method than changing the level 
of DC stimulation to the -portal, then relying on amplitude-
to-frequency encoding at the -portal, as dictated by (8).

Increasing GC firing frequency led to a marked transition 
in circuit behavior, from overall suppression of the 
pyramidal cell at low frequencies to facilitation of its 
activity at frequencies exceeding 10 to 15 Hz. Beyond 20 
Hz, PC action potentials were regularly elicited, in spite of 
feedforward inhibition. 

For a circuit response that was inhibitory, the pyramidal 
cell’s postsynaptic potential (with DC bias subtracted) was 
mostly negative. The opposite was true for an excitatory 
response. To quantify the level of excitation or inhibition at 
the output, the pyramidal PSP was integrated numerically 
(using the trapezoidal method) for each value of GC 
frequency tested. The resultant plot, depicted in Fig. 3, 
reveals the frequency response of the MF associated 
feedforward circuit approximates that of a highpass filter. 

IV. DISCUSSION

There are many examples in Nature of systems in which 
opposing forces are at play, and tipping the system in favor 
of one particular force allows that force to determine the 
system’s fate. The MF associated feedforward circuit is one 
such example, where inhibition and excitation compete for 
dominance, and depending on the circumstances, either 

m
3 0.01 0.1 0

 c 1 0 0 0

m 2 0.45 0 -0.40 
3 0.5 0 0

     m and n are source and destination neurons, respectively. MF 
associated neurons are numbered accordingly: 1  granule cell; 2 

 pyramidal cell; 3  interneuron. 

ˆ
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inhibition or excitation prevails, dictating circuit behavior. 
The results of the MCO model demonstrate the MF 

associated feedforward network acts as a highpass filter for 
inputs originating from the dentate gyrus. As Fig. 3 
indicates, the filter is non-ideal, exhibiting Gibbs 
phenomenon and ripples in the pass-band. The degree of 
non-ideality in biological MF feedforward circuits has not 
been characterized and cannot be gauged from the model. 

Another limitation of our setup is that it consists of 3 
model neurons, whereas the true network constituents are far 
more numerous, arrayed in sub-populations of functionally-
similar neurons [11], [12]. However, the fundamental 
connectivity of the feedforward circuit remains as is shown 
in Fig. 1, and the 3 labile MCOs can be considered high-
level representations of those neuronal sub-populations. This 
simplification does not detract from the model’s ability to 
make predictions about network properties. In comparison 
with electrophysiological investigations of the MF 
feedforward circuit, the MCO model was able to verify 
many of the experimental observations, including the 
biphasic nature of the pyramidal PSPs (Fig. 2) [12], [16] and 
the frequency- dependent switching from inhibition to 
excitation for GC frequencies greater than 10 Hz [7], [12]. 

Altogether, evidence from the model and from experiment 
suggests the MF associated feedforward circuit plays an 
important regulatory role in auto-associative learning and 
information processing in the hippocampus, reserving access 
to the sensitive recurrent collaterals of the CA3 for those DG 
inputs that carry the appropriate temporal code. 
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