
 
 

 

  

Abstract� The propulsion of ferromagnetic micro-carriers 
in the blood vessels by magnetic gradients generated from a 
Magnetic Resonance Imaging (MRI) system is of special 
interest for targeted interventions such as chemotherapy or 
chemo-embolization. As such, Fe-Co alloys for its highest 
magnetization saturation, and single crystal Ni-Mn-Ga powder 
and Terfenol-D for their deformation in magnetic field are 
evaluated for their biocompatibility. The toxicity of these 
materials is evaluated with MTT cell viability tests. The tests 
show that Fe-Co (Permendur and Vacoflux 17) alloys are toxic 
within 24 hours while the single crystal Ni-Mn-Ga powder 
becomes toxic after 48 hours. The Terfenol-D, despite its high 
degradation, has 90% cell viability after 72 hours. These results 
indicate that such candidate materials to be considered in 
untethered micro-carriers or devices in the blood vessels, would 
require, depending upon the time spent in the blood vessels, 
further processes to be viable for such applications. 
 
 Index Terms� Biocompatibility, Fe-Co alloys, Terfenol-D, 
single crystal Ni-Mn-Ga, medical microdevices, MTT test 
 

I. INTRODUCTION 
The aim of the Magnetic Resonance Submarine (MR-Sub) 

project is the automatic navigation of ferromagnetic entities 
in the blood vessels for targeting regions of the 
cardiovascular networks that are inaccessible or at high risks 
with existing modern interventional tools.  As such, the 
concept relies on the propulsion or steering forces induced 
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on a ferromagnetic core embedded in microdevices or 
carriers designed for a specific application. Gradient coils 
embedded in a clinical MRI system are used to induce such 
force on the ferromagnetic core. As the size of the 
ferromagnetic core decreases, more gradient strengths are 
required to induce sufficient force. Because of the limit in 
the maximum gradient amplitude that can be generated due 
to technological constraints, the saturation magnetization of 
the ferromagnetic core [1] becomes strategically important, 
especially for operations in the capillaries. As such, Fe-Co 
alloys such as Permendur and Vacoflux 17 with the highest 
magnetization saturations as depicted in Table 1 are of 
special interest in this particular context. 

 
TABLE I 

FERROMAGNETIC MATERIALS WITH THEIR SATURATION 
MAGNETIZATION 

 
 

Another interesting aspect for the implementation of some 
devices is the capability of deformations when placed in a 
magnetic field, a phenomenon also known as 
magnetostriction. As such, two materials are considered: 
single crystal Ni-Mn-Ga alloys [2] and Tb0.27Dy0.73Fe1.95 
giant magnetostrictive material, also known as Terfenol-D 
(TbxDy1-xFey). This study is a continuation of the (3-(4,5-
dimethylthiazote-2yl)-2,5-diphenyl tetrazodium bromide) 
(MTT) results on polycrystalline Ni-Mn-Ga which shows 
the toxicity of this alloy. The toxicity of Ni-Mn-Ga alloy is 
evaluated here for different shapes and crystalline structures. 

 

II. MATERIALS & METHODS  
Vacoflux 17 and Permendur are Fe-Co alloy with 81%Fe, 

17%Co, 2%Cr and 49%Fe, 49%Co, respectively. The 
samples were sized by Electrical Discharge Machining 
(EDM) prior to the MTT tests. The weight of each sample 
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was 2 grams. Every sample was cleaned with acetone 
followed by methanol in an ultrasonic bath during 10 
minutes. 

Single crystal Ni-Mn-Ga powder has the following 
composition: 48.6 at% Ni, 31.5at% Mn, 19.9at% Ga. 

For the Tb0.27Dy0.73Fe1.95, samples in powder form and 
with different bulk sizes (sample 1: length 23mm and 
sample 2: length 10mm) and a thickness of 2.08mm were 
used during MTT tests. 

Ethylene Oxide was used for the sterilization of the Ni-
Mn-Ga and Terfenol-D samples. Five days after 
sterilization, the ethylene oxide residues were removed from 
the samples. Half of the Fe-Co samples were sterilized with 
ethylene oxide while the remaining samples were sterilized 
by ultra-violet rays. For UV sterilization, the samples were 
put in a sterile host during 24 hours [3]. Prior to UV 
sterilization, the samples were cleaned with acetone and 
isopropanol under agitation. 

Dulbecco�s Modified Eagle�s Medium (DMEM) (Sigma 
Chemical Co.) was added on the samples and placed in an 
incubator (37°C, 95-5% O2-CO2 humidified atmosphere) 
during five days. To avoid degradation of the powder, the 
samples were not shacked during extraction. After 
extraction, the medium was centrifuged (1200rpm, 
temperature= 4°C) during 5 minutes. For extraction, 0.1 
g/ml of medium for the powder and 0.2g/ml for the bulk 
samples were used. 

Mouse fibroblast cells L929 were used. For the Ni-Mn-Ga 
and Terfenol-D samples, cells of different years (2003 and 
2004) were used to avoid the fact that the results of toxicity 
can be induced by the age of the cells. The cells were 
cultured at 37°C, 95-5% O2-CO2 humidified atmosphere in 
DMEM, supplemented with 3.7g/l of sodium bicarbonate, 
10% heat-inactivated (56oC for 30 min.) Fetal Bovine Serum 
(FBS, Gibco laboratories) and 1% penicillin-streptomycin 
solution (Gibco laboratories) [4]. 

The MTT test is based of the capacity of the living 
fibroblasts to synthesise (3-(4,5-dimethylthiazote-2yl)-2,5-
diphenyl tetrazodium bromide) into formasan crystals. by 
the mitochondria [5]. The crystals are released from the cells 
with acidified isopropanol. The optical density of each well 
is measured. The cells are seeded in 96 well culture plates at 
a density of 5×104 cells/200µl cell culture liquid. After 24 
hours, the medium is removed from the wells and replaced 
by the extracts. The test is done for three time periods: 24, 
48 and 72 hours. As negative control, only cells with the 
medium in the wells are used. The optical density is 
determined by a microplate reader operating at 570 nm. 

 

III. RESULTS  
Fe-Co alloys: 

The cell viability is higher for the Vacoflux 17 than for 
the Permendur (Fig. 1). Despite this difference, the cell 
viability is not higher than 72% after 24hr. For these 
materials, it should be noted that the viability is decreasing 
significantly after 24hr of incubation with cells. This result 
is confirmed by the morphology of the cells (fig 5). The two 

sterilizations were efficient and there is no significant 
difference between the two processes. 

 

 
 
Fig 1. L-929 viability after exposure to Fe-Co extracts. Vacoflux UV means 
Vacoflux 17 sterilized by UV and Vocoflux OE means vacoflux 17 sample 
sterilized with Ethylene Oxide. 

 
Cells of 2003 

 
Cells of 2004 

 
Fig 2. L-929 (2003) viability after exposure to single crystal Ni-Mn-Ga 
powder (Ni-Mn-Ga_1 & Ni-Mn-Ga_2) and Tb0.27Dy0.73Fe1.95 samples 
(Terfenol-D_1 = sample 1 & Terfenol-D_2 = sample 2). 
 
 
 
 
 
 
 
 
 
            (a) 
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            (b) 
Fig 3. Tb0.27Dy0.73Fe1.95 samples after the extraction during five days: (a) 
sample 1 and (b) sample 2. 
 

 
 
Fig 4. L-929 viability after exposure to Tb0.27Dy0.73Fe1.95 powder. 
 

 
            (a) 

 
(b) 

 
(c) 

Fig 5. L-929 pictures in the well of the 96 wells plate at 48hr of incubation. 
(a) L-929 as control, (b) L-929 cells with filtered extract of Tb0.27Dy0.73Fe1.95 
powder, (c) L- 929 Cells with Vacoflux 17 OE. 
 

Single crystal Ni-Mn-Ga alloy: 
There is no significant difference between the results 

obtained with cells from 2003 and the cells from 2004 (Fig 
2). The optic density is the same between the two samples. 
The cell viability at 80% is quite acceptable at 24 hours (Fig 
2). After 24 hours, the viability decreases very rapidly. This 
result shows that Ni-Mn-Ga is toxic for long period 
application in the body. 
 

Tb0.27Dy0.73Fe1.95 giant magnetostrictive material: 
The cell viability for the Terfenol-D is very high. We note 

that the cell viability is decreasing sensibly with longer 
incubation time but remains acceptable. Despite the slight 
degradation of the samples (Fig 3), it appears not to be toxic. 
Figure 5 shows clearly the good viability of the cells by their 
morphology. These results are completed by further tests on 
Terfenol-D powder having the same composition as the bulk 
samples. With the powder, the effect of the centrifugation 
during the extraction was investigated. No significant 
difference was noticed for incubation time reaching 48 and 
72 hrs. The cell viability remains very good. 

 

IV. DISCUSSION  
This first test shows the cytotoxicity of the Fe-Co alloys 

on a long incubation time with cells. From this test, we 
cannot conclude on the origin of the cell viability difference 
between the two alloys. These results can potentially be 
explained by the percentage of Co in the samples. The cobalt 
is known to be toxic when it is released in the body [6,7]. 
For the Vacoflux 17, the presence of chrome gives to the 
alloy better corrosion behaviour, but this is still to be 
verified. Hence, the ions release is less than from the 
Permendur samples. These hypotheses can be validated by a 
corrosion test and an analysis of the corrosion solution by 
Inductive Coupled Plasma-Mass Spectroscopy (ICP-MS). 
Despite a lower saturation magnetization than the 
Permendur (2.2T vs. 2.45T), it seems that the Vacoflux 17 is 
the best candidate for the implementation of ferromagnetic 
devices. 

It�s clear that Ni-Mn-Ga cannot be used in the body in 
powder form except for period not exceeding 24 hours. The 
ions release from this alloy has to be evaluated because it 
can have an influence on the cell viability [8]. The results 
with Terfenol-D are very surprising after observing the state 
of the samples after the extraction process (Fig 3). The 
degradation products of this material seem to be not toxic. 
The limit of this test is that the composition of the products 
degradation is unknown. A test done with powder, known to 
increase the specific surface, has very good cell viability. 
The fact that there is no evidence of the toxicity on the bulk 
and powder material opens the possibility to use this 
material in the fabrication of medical microdevices. The 
main problem of this material is its poor mechanical 
properties beside applications of this material as a composite 
[9]. 
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V. CONCLUSION  
From its magnetic property, Vacoflux 17 is a good 

material to be embedded in microdevices being propelled in 
blood vessels by magnetic gradients generated by a clinical 
MRI system. Unfortunately, the cell viability is not high 
enough to use this alloy in the human body and require 
additional processes such as coating with titanium to 
increase the corrosion resistance and to prevent the release 
of toxic ions [10,11]. Haemocompatibility tests will be done 
to evaluate the blood reactions. 

Ni-Mn-Ga alloy is a very interesting material for the 
development of new microdevices operating in a magnetic 
field. Because of high toxicity after 24 hours, this material 
cannot be used without further processing. A very promising 
alternative is to develop a composite-based Ni-Mn-Ga 
powder [12]. 

Tb0.27Dy0.73Fe1.95 giant magnetostrictive material offers 
good cell viability but its biocompatibility has to be proved 
by inflammatory tests. The degradation of this material 
indicates that it will be better used in a composite. Further 
tests of the magnetic properties at 37oC need to be evaluated. 
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