
 
 

 

  

Abstract—In the protein-protein interaction (PPI) network 
there are many functional modules, each involving several 
protein interactions to perform discrete functions. Pathways 
and protein complexes are the examples of the functional 
modules. In this paper, we propose a rule-based method for 
detecting the modules. The rule is expressed in terms of triples 
and operators between the triples. The former represents 
conceptual relations reifying the protein interactions of a 
module, and the latter defines the structure of the module with 
the relations. Additionally, users can define composite rules by 
composing the predefined rules. The composite rules make it 
possible to detect modules that are conceptually similar as well 
as structurally identical to users’ queries. The rules are 
managed in the XML format so that they can be easily applied 
to other networks of different species. We also provide a 
visualized environment for intuitionally describing complexly 
structured rules. 

I. INTRODUCTION 
HE PPI network, as an integrated system involving 

protein interactions, is used as an important mean to 
systematically understand major events that take place in a 
cell. In this network, there are many functional modules that 
consist of several protein interactions to perform discrete 
biological functions[1]. The modules may be viewed as 
fundamental building blocks of cellular organization. 
Prominent examples of the blocks are pathways and protein 
complexes such as “Apoptosis,” “Parkinson’s disease” 
pathway, and “Hemoglobin,” “Ribosome” complex, etc. 
Especially, particular functional modules related to some 
diseases may be a target for drug discoveries. Also, positive 
and negative side effects can be predicted by analyzing 
biological reaction with other proteins and interactions in 
these modules.  

 
Currently, the PPI network data is quickly extracted by the 
enhanced experimental techniques, such as “Yeast 
Two-Hybrid”[2], and protein complexes are identified by 
high-throughput method such as “TAP-MS”[3] and 
“HMS-PCI”[4]. However, the methods require much time 
and expense to detect specific user-interested functional 
modules due to repeated experiments. Therefore, alternative 
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methods have been developed to predict target functional 
modules before experiments and to detect known functional 
modules for reviewing and supporting further analysis. 
Recently, Bader and Hogue[5] suggest a clustering method 
for searching dense sub-graphs in which each protein has 
similar functions with the others. This method relies on the 
fact that protein complexes generally correspond to dense 
sub-graphs and its components have similar functions with 
each other. However, the method cannot find other modules 
having different functions yet conceptually connected. As 
another approach, Leser[6] defines a query language, 
PQL(Pathway Query Language) for detecting user-intended 
modules. This approach can detect relatively various 
structures by exploiting a set of constraints described in 
‘WHERE’ clause, such as attributes of node and path 
expressions between nodes. However, it fails to detect 
modules that have composite structure consisting of several 
modules. Another drawback is that it does not allow users to 
directly define structurally complex modules, because the 
only way to describe the structure of the module is to 
manually formulate the query. 

 
To resolve the problems, we propose a rule-based method for 
detecting functional modules. In this method, the rule can 
detect modules that agree with user-intention. The rule is 
expressed in terms of triples and operators between the triples. 
The former represents conceptual relations reifying the 
protein interactions of a module, and the latter defines the 
structure of the module with the relations. By composing the 
predefined rules, user can define new rules that have a 
composite structure as well. The composite rule makes it 
possible to detect modules that are conceptually similar as 
well as structurally identical to the users’ queries. The rules 
are managed in the XML format so that they can be easily 
applied to the other networks of different species. We also 
provide a visualized environment for intuitionally describing 
complexly structured rules. 

II. PPI NETWORK MODEL 
In the proposed method, the PPI network is expressed as N = 
<P, R>, where ‘P’ is a set of proteins and ‘R’ is a set of 
interaction relations among them. Since a relation r ∈ R(N) 
can be represented as two specific proteins and a type of 
interaction between them, we may define it as follows. 
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In this definition, P(N) represents a set of proteins, R(N) 
represents a set of relations, and ‘TYPE’ represents a set of 
types of interaction respectively. Each protein p ∈ P(N) has 
detailed properties such as ID, name, gene, and annotation 
that is a set of ontology terms. Each type ∈ TYPE represents a 
biological interaction between two proteins such as ‘bind’, 
‘activate’, ‘regulate’, ‘decrease’, ‘increase’, etc.  Also, the 
PPI network includes many functional modules. In other 
words, because the module ‘M’ is the sub-network of the PPI 
network, it can be represented as the similar formulation as 
the PPI network’s : 
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Fig. 1 Functional module ‘M1’ transformed from the rectangle 

part of “Parkinson’s disease pathway” 
 

Fig. 1 shows a  module ‘M1’ together with a set of relations. It 
is transformed from a rectangle part of “Parkinson’s disease 
pathway” extracted from KEGG[7]. In the ‘M1’, gene nodes 
are dealt with proteins and types of relation between the 
nodes are used just as it is. Also, duplicated nodes are 
annotated by a single protein. For example, the node ‘UBA1’ 
corresponds to ‘p2’ with a identifier ‘P22313’. The type of 
relation between ‘p2’ and ‘p3’ is type23 = ‘activation’, which is 
the same as the type of interaction between ‘UBA1’ and 
‘UBCH7’. Duplicated nodes ‘PARK2’ are annotated by ‘p7’.  

III. RULE SPECIFICATION 
A rule for detecting functional modules consists of triples and 
operators between these triples. At first, we define the triple 
for describing conceptual relations. It is as follows. 
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In this definition, GO(Gene Ontology)[8] is a set of ontology 
terms used to describe the ‘annotation’ property of each 
protein. For detecting specific relations included in the 
module, users can define the triple with a protein directly or 
ontology terms. For example, the triple t = <n1, n2, 
‘inactivation’> can be defined with ‘n1’ (ontology term 
‘protein binding’) and ‘n2’ (protein ‘p3’).  
 
Next, operators are classified into connection operator and 
logical operator. The former is used to express various types 
of structural connection between two triples, and the latter 
expresses logical relationships between them. As connection 
operators, we define ‘•’ (Arbitrariness) and ‘*’ (Association), 
and as logical operators, we adopt ‘¦’ (Logical OR) and ‘&’ 
(Logical AND).  
 
We can express the structure of the rule by a regular grammar. 
The rule(‘RULE’) is expressed as single triple(‘t’) or a 
composite rule (‘COMPOSITE_ RULE’). The composite rule is 
composed of predefined rules and operators (‘OPERATOR’) 
between the rules, or is expressed as a predefined rule with a 
precedence(parenthesis). A rule used in the composite rule 
may be a single triple or recursively another composite rule.  
 

RULE  t | COMPOSITE_RULE 
COMPOSITE_RULE  RULE OPERATOR RULE 

| ‘(’RULE‘)’ 
OPERATOR  ‘•’ | ‘*’ | ‘&’ | ‘¦’ 

 
The composite rules are useful when detecting complex 
modules composed of separable modules. For example, the 
following is the composite rule to detect the pathway of 
“Parkinson’s disease.” It is the complex module composed of 
several separable pathways such as “Inhibition of transmitter 
release,” “Absence of lewy body,” “GPR37 accumulation,” 
etc.  
 

Inhibition of transmitter release   
<n1, n2, type12> * (<n2, n3, type23> | <n2, n4, type24>) * … 

Absence of lewy body   …  
(<n5, n7, type57> | <n6, n7, type67>) * <n7, n10, type710> 

… 
Parkinson’s disease    

Inhibition of transmitter release |  
Absence of lewy body | … 
 

It is defined by combining the predefined rules such as 
‘Inhibition of transmitter release’ and ‘Absence of lewy body’  used 
for detecting the corresponding pathways.  

IV. RULE EVALUATION 
Fig. 2 shows the entire process of rule evaluation for 
detecting functional modules within the network N1, where 
pi=1,…,6 ∈ P(N1), nj ∈ pi.annotation, and nj=1,…,6 ∈GO. This 
figure is used to explain the evaluation process of node, 
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triples, and operators, which are described in the following 
steps. 
 

rule1 < n1, n2, type1 > * < n2, n3, type2 >
rule2 rule1 • < n4, n5, r3 >

rule+ (< n1, n2, type1 > * < n2, n3, type2 >) 
• < n4, n5, type3 >

Rule Expansion

n1 { p1 }
n2 { p2, p4 }
n3 { p3 }
n4 { p3, p4 }
n5 { p5 }

Node Evaluation

t1 = < n1, n2, type1 > { r1 }, { r2 }
t2 = < n2, n3, type2 > { r3 }
t3 = < n4, n5, type3 > { r6 }, { r7 }

Triple Evaluation

t1 * t2 { { r1 }, { r2 } } * { { r3 } } = { {r1, r3 } }

(t1 * t2) • t3 { { r1, r3 } } • { { r6 }, { r7 } }
= { {r1, r3, r6 }, {r1, r3, r7 } }

Operator Evaluation
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Fig. 2 Entire process of rule evaluation 

A. Rule expansion 
Target rules for evaluation, ‘rule1’ and ‘rule2’, are expanded 
into a series of simple rules consisting of pure triples and 
operators. ‘rule+’ is generated as a real rule for evaluation by 
expanding the target rules. 

B. Node evaluation 
Each node ‘nj’ included in ‘rule+’ is indexed by matched 
proteins {pj}. According to the properties of nodes defined in 
a triple, each node may be matched  and evaluated with more 
than one protein −for example, n2  {p2, p4}. 
 
In case the node is defined as a protein, it is indexed directly, 
because each protein has a detailed information using 
SWISS-PROT[9]. Therefore, an identifier coincides with 
exactly one protein. In case the node is defined as GO terms, 
the node(ni) can be matched with several proteins that have 
conceptually similar ‘annotation’(nj) as well as exactly the 
same. For examples, if ‘ni’ is defined with ‘regulation of 
exocytosis’, ‘annotation’(nj) of matched proteins can be 
defined with more generalized terms of the ‘ni’, such as 
{‘exocytosis’/0.74, ‘regulation of transport’/0.74,…}, and 
more specific terms  such as {‘positive regulation...’/0.74, 
‘…calcium ion- dependent’/0.54,…}. 

C. Triple evaluation 
A triple is evaluated against a set of modules satisfying each 
of its conditions. For that reason, evaluation is performed by 
calculating similarity between the triple and the modules. The 
similarity ‘S’ is calculated by combining the similarity ‘S1’ 
between two nodes of the triple and the two proteins of a 
relation in a module, and the similarity ‘S2’ between the 
relation type of the triple and the relation of each module.  
 
Similarity between nodes in the triple and protein in the 

relation is evaluated using the index nj that is made in the 
previous step, and matched relations are indexed by ti. For 
example, in Fig. 2, t1 = <n1, n2, type1> is evaluated as follows: 
With n1  {p1} and n2  {p2,  p4}, two relations, r1 = <p1, p2, 
type1> between ‘p1’ and ‘p2’, r2 = <p1, p4, type1> between ‘p1’ 
and ‘p4’, are identified. Since the type of ‘r1’ and ‘r2’ are 
matched with the type of ‘t1’, {r1} and {r2} match the triple 
‘t1’.  

D. Operator evaluation 
The rule is evaluated by applying operations to a set of 
modules. These operations are determined by operators 
defined in the rule. 
 
First, ‘*’(Association) is used to detect modules composed of 
relations that match two given rules and connected directly 
between these matched relations. For example, rule = t1 * t2, 
where t1 = <n1, n2, type1> and t2 = <n2, n3, type2>, is evaluated 
as follows; by cross union between t1  {r1}, {r2} and t2  
{r3}, two modules, {r1, r3} and {r2, r3}, are matched. Among 
them, {r1, r3} is selected, because ‘r1’ and ‘r3’ is connected 
through protein ‘p2’, but there is no connection between ‘r2’ 
and ‘r3’.  
 
Next, ‘•’(Arbitrariness) is used to detect modules composed 
of relations that match two given rules. For example, the rule 
= (t1 * t2) • t3 where (t1 * t2)  {r1, r3} and t3  {r6}, {r7} is 
evaluated as follows; by cross union between t1 * t2 and t3, 
two modules, {r1, r3, r6} and {r1, r3, r7}, are obtained. Next, as 
a final result of ‘rule+’, two modules are suggested; {r1, r3, r6} 
consists of all connected relations, while {r1, r3, r7} is 
composed of two separate sub-graphs (see Fig. 2). 
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Fig. 3 Evaluation process of t1 *RESTRICTION t2 

 
By imposing on the ‘*’ operator constraints of connection 
between two rules, it is also possible to detect modules that 
are indirectly connected. For example, rule = t1 *RESCTRICTION 
t2, and RESCTRICTION = [DISTANCE(n4, n3) < 3] may 
detect modules that are connected directly and indirectly 
between ‘t1’ and ‘t2’. This constraint specifies that ‘n4’ and 
‘n3’ need to be connected by  * with the number of intervening 
nodes less than 3. ‘n4’ is matched with two proteins ‘p3’ and 
‘p4’, and ‘n3’ is matched only with ‘p3’. Since ‘t1’ is evaluated 
only with ‘p4’, this constraint is translated into 
RESCTRICTION = [DISTANCE(p4, p3) < 3]. There are two 
paths satisfying the restriction, path1 and path2; path1 
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connects two modules via ‘r4’, and path2 via ‘r7’, ‘r6’. 
Therefore, restricted cross union between ‘t1’ ,‘t2’, and the 
paths is calculated as a {r2, r4, r3} and {r2, r7, r6, r3}. Directly 
connected module {r1, r3} is also included in final result. 
 
Logical operators express logical relationships between 
modules matched with two rules. ‘¦’(OR) means union and 
‘&’(AND) means intersection between two sets of modules.  

V. DESIGN AND IMPLEMENTATION 
There are three ways to define the rule of user-intended 
functional module in the proposed method. First, users can 
define the rule in text format as described in this paper. 
Second, they can define it in visual format by representing 
triples in terms of nodes and links. The operators may be 
represented as several different graphical notations. Third, 
user can write out all definitions related to the rule in the 
XML format. Both the text form and the visual form of the 
rule are transformed automatically to the XML format before 
processing the rule.  
 

Rule definition

Detected Modules

 
Fig. 4 Rule-based detection in the visual environment 

 
Figure 4 shows the process of rule-based detection in the 
visual environment. The rule represents a part of 
“Parkinson’s disease” pathway and defines with various 
properties of protein node, such as ID, protein name, gene 
name, and protein function using GO terms. Each solid line 
represents a triple and each connection between two solid line 
represents the ‘*’ operation. Dotted line between two protein 
nodes represents the ‘*’ operation with path constraints. 
Disconnected graph means the ‘•’ operation between two 
disconnected sub-graphs.  

 

 
Fig. 5 XML Schema for representing the rule 

Figure 5 shows the XML schema for representing the rules 
and storing the defined rules into a knowledge base. The 
‘RuleSet’ consists of a set of rules used for representing the 
rules. ‘SingleRule’ is used for referencing a triple and a 
predefined rule. ‘CompositeRule’ is needed for defining a 
rule with operators between predefined rules.  

VI. CONCLUSIONS AND FUTURE WORKS 
In this paper, we designed and implemented a rule-based 
method for detecting meaningful functional modules in a 
large and complex PPI network. On a visualized environment, 
rules are used to express the biological features of the 
modules in terms of triples and operators between the triples. 
The former represents conceptual relations reifying the 
protein interactions of a module, and the latter defines the 
structure of the module with the relations. Our method may 
be applied to other related researches in three directions; first, 
once representing the general domain knowledge of a known 
module into a rule, users can easily capture proteins included 
in the module as well as the concrete structure of their 
interactions. Second, by detecting complex modules with the 
corresponding composite rules, to analyze the interaction 
between the modules is also possible. Third, by applying the 
rule to the other networks of different species, user can 
predict similar functional modules in other species.  

 
Although we proposed basic rule operators, additional rule 
operators are required to naturally express user intention. 
Additionally, we may need more sophisticated methods to 
precisely estimate the similarity between triples and protein 
interaction relations using the other information such as 
protein’ s amino acid sequence and protein structure. 
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