

Abstract—In the protein-protein interaction (PPI) network
there are many functional modules, each involving several
protein interactions to perform discrete functions. Pathways
and protein complexes are the examples of the functional
modules. In this paper, we propose a rule-based method for
detecting the modules. The rule is expressed in terms of triples
and operators between the triples. The former represents
conceptual relations reifying the protein interactions of a
module, and the latter defines the structure of the module with
the relations. Additionally, users can define composite rules by
composing the predefined rules. The composite rules make it
possible to detect modules that are conceptually similar as well
as structurally identical to users’ queries. The rules are
managed in the XML format so that they can be easily applied
to other networks of different species. We also provide a
visualized environment for intuitionally describing complexly
structured rules.

I. INTRODUCTION
HE PPI network, as an integrated system involving

protein interactions, is used as an important mean to
systematically understand major events that take place in a
cell. In this network, there are many functional modules that
consist of several protein interactions to perform discrete
biological functions[1]. The modules may be viewed as
fundamental building blocks of cellular organization.
Prominent examples of the blocks are pathways and protein
complexes such as “Apoptosis,” “Parkinson’s disease”
pathway, and “Hemoglobin,” “Ribosome” complex, etc.
Especially, particular functional modules related to some
diseases may be a target for drug discoveries. Also, positive
and negative side effects can be predicted by analyzing
biological reaction with other proteins and interactions in
these modules.

Currently, the PPI network data is quickly extracted by the
enhanced experimental techniques, such as “Yeast
Two-Hybrid”[2], and protein complexes are identified by
high-throughput method such as “TAP-MS”[3] and
“HMS-PCI”[4]. However, the methods require much time
and expense to detect specific user-interested functional
modules due to repeated experiments. Therefore, alternative

J. Park, J. Choi, S. Park are with Electronics and Telecommunications

Research Institute, 161 Gajeong-dong, Yuseong-gu, Daejeon, 305-350,
Korea(e-mail:jmpark93;jhchoi;psj@etri.re.kr).

J. Yang is with Division of Electronics & Information Engineering,
Chonbuk National University, Duckjin-dong, Jeonju, 561-756, Korea
(corresponding author to provide phone: +82-63-270-3388; e-mail:
jdyang2000@ paran.com).

methods have been developed to predict target functional
modules before experiments and to detect known functional
modules for reviewing and supporting further analysis.
Recently, Bader and Hogue[5] suggest a clustering method
for searching dense sub-graphs in which each protein has
similar functions with the others. This method relies on the
fact that protein complexes generally correspond to dense
sub-graphs and its components have similar functions with
each other. However, the method cannot find other modules
having different functions yet conceptually connected. As
another approach, Leser[6] defines a query language,
PQL(Pathway Query Language) for detecting user-intended
modules. This approach can detect relatively various
structures by exploiting a set of constraints described in
‘WHERE’ clause, such as attributes of node and path
expressions between nodes. However, it fails to detect
modules that have composite structure consisting of several
modules. Another drawback is that it does not allow users to
directly define structurally complex modules, because the
only way to describe the structure of the module is to
manually formulate the query.

To resolve the problems, we propose a rule-based method for
detecting functional modules. In this method, the rule can
detect modules that agree with user-intention. The rule is
expressed in terms of triples and operators between the triples.
The former represents conceptual relations reifying the
protein interactions of a module, and the latter defines the
structure of the module with the relations. By composing the
predefined rules, user can define new rules that have a
composite structure as well. The composite rule makes it
possible to detect modules that are conceptually similar as
well as structurally identical to the users’ queries. The rules
are managed in the XML format so that they can be easily
applied to the other networks of different species. We also
provide a visualized environment for intuitionally describing
complexly structured rules.

II. PPI NETWORK MODEL
In the proposed method, the PPI network is expressed as N =
<P, R>, where ‘P’ is a set of proteins and ‘R’ is a set of
interaction relations among them. Since a relation r ∈ R(N)
can be represented as two specific proteins and a type of
interaction between them, we may define it as follows.

TYPEtypeandNPppwhere

typeppr

ijji

ijji

∈∈

>=<

)(,

,,,

A Rule-based Detection of Functional Modules in Protein-Protein
Interaction Networks

Jongmin Park, Jaehun Choi, Jaedong Yang, and Soo-Jun Park

T

Proceedings of the 28th IEEE
EMBS Annual International Conference
New York City, USA, Aug 30-Sept 3, 2006

SaEP3.3

1-4244-0033-3/06/$20.00 ©2006 IEEE. 5810

In this definition, P(N) represents a set of proteins, R(N)
represents a set of relations, and ‘TYPE’ represents a set of
types of interaction respectively. Each protein p ∈ P(N) has
detailed properties such as ID, name, gene, and annotation
that is a set of ontology terms. Each type ∈ TYPE represents a
biological interaction between two proteins such as ‘bind’,
‘activate’, ‘regulate’, ‘decrease’, ‘increase’, etc. Also, the
PPI network includes many functional modules. In other
words, because the module ‘M’ is the sub-network of the PPI
network, it can be represented as the similar formulation as
the PPI network’s :

)()()()(
,,

NRMRandNPMpwhere
RPM

⊆′⊆′
>′′=<

p1 p2 p7

p3

p4

p5

p6

p9

p8

p10

p11

{P02248,UB} {P22314, UBA1}

{P68036, UBCH7}

{O14933, UBCH8}

{Q8N2K1, UBC6}

{P60604, UBC7}

{O60260, PARK2}

{Q16623, STX1A}

{Q99719, CDCrel1}

{Q9Y6H5, SNCAIP}

{O15354, GPR37}

ATP ADP

+u

+u

+u

+u

binding/association

activation

inactivation

Fig. 1 Functional module ‘M1’ transformed from the rectangle

part of “Parkinson’s disease pathway”

Fig. 1 shows a module ‘M1’ together with a set of relations. It
is transformed from a rectangle part of “Parkinson’s disease
pathway” extracted from KEGG[7]. In the ‘M1’, gene nodes
are dealt with proteins and types of relation between the
nodes are used just as it is. Also, duplicated nodes are
annotated by a single protein. For example, the node ‘UBA1’
corresponds to ‘p2’ with a identifier ‘P22313’. The type of
relation between ‘p2’ and ‘p3’ is type23 = ‘activation’, which is
the same as the type of interaction between ‘UBA1’ and
‘UBCH7’. Duplicated nodes ‘PARK2’ are annotated by ‘p7’.

III. RULE SPECIFICATION
A rule for detecting functional modules consists of triples and
operators between these triples. At first, we define the triple
for describing conceptual relations. It is as follows.

TYPEtypeandGOorPnnwhere

typennt

ijji

ijji

∈∈

>=<

,

,,,

In this definition, GO(Gene Ontology)[8] is a set of ontology
terms used to describe the ‘annotation’ property of each
protein. For detecting specific relations included in the
module, users can define the triple with a protein directly or
ontology terms. For example, the triple t = <n1, n2,
‘inactivation’> can be defined with ‘n1’ (ontology term
‘protein binding’) and ‘n2’ (protein ‘p3’).

Next, operators are classified into connection operator and
logical operator. The former is used to express various types
of structural connection between two triples, and the latter
expresses logical relationships between them. As connection
operators, we define ‘•’ (Arbitrariness) and ‘*’ (Association),
and as logical operators, we adopt ‘¦’ (Logical OR) and ‘&’
(Logical AND).

We can express the structure of the rule by a regular grammar.
The rule(‘RULE’) is expressed as single triple(‘t’) or a
composite rule (‘COMPOSITE_ RULE’). The composite rule is
composed of predefined rules and operators (‘OPERATOR’)
between the rules, or is expressed as a predefined rule with a
precedence(parenthesis). A rule used in the composite rule
may be a single triple or recursively another composite rule.

RULE t | COMPOSITE_RULE
COMPOSITE_RULE RULE OPERATOR RULE

| ‘(’RULE‘)’
OPERATOR ‘•’ | ‘*’ | ‘&’ | ‘¦’

The composite rules are useful when detecting complex
modules composed of separable modules. For example, the
following is the composite rule to detect the pathway of
“Parkinson’s disease.” It is the complex module composed of
several separable pathways such as “Inhibition of transmitter
release,” “Absence of lewy body,” “GPR37 accumulation,”
etc.

Inhibition of transmitter release
<n1, n2, type12> * (<n2, n3, type23> | <n2, n4, type24>) * …

Absence of lewy body …
(<n5, n7, type57> | <n6, n7, type67>) * <n7, n10, type710>

…
Parkinson’s disease

Inhibition of transmitter release |
Absence of lewy body | …

It is defined by combining the predefined rules such as
‘Inhibition of transmitter release’ and ‘Absence of lewy body’ used
for detecting the corresponding pathways.

IV. RULE EVALUATION
Fig. 2 shows the entire process of rule evaluation for
detecting functional modules within the network N1, where
pi=1,…,6 ∈ P(N1), nj ∈ pi.annotation, and nj=1,…,6 ∈GO. This
figure is used to explain the evaluation process of node,

5811

triples, and operators, which are described in the following
steps.

rule1 < n1, n2, type1 > * < n2, n3, type2 >
rule2 rule1 • < n4, n5, r3 >

rule+ (< n1, n2, type1 > * < n2, n3, type2 >)
• < n4, n5, type3 >

Rule Expansion

n1 { p1 }
n2 { p2, p4 }
n3 { p3 }
n4 { p3, p4 }
n5 { p5 }

Node Evaluation

t1 = < n1, n2, type1 > { r1 }, { r2 }
t2 = < n2, n3, type2 > { r3 }
t3 = < n4, n5, type3 > { r6 }, { r7 }

Triple Evaluation

t1 * t2 { { r1 }, { r2 } } * { { r3 } } = { {r1, r3 } }

(t1 * t2) • t3 { { r1, r3 } } • { { r6 }, { r7 } }
= { {r1, r3, r6 }, {r1, r3, r7 } }

Operator Evaluation

p2 p6p3

p5p4

p1

r2 / type1

r1 / type1

r3 /
type2

r5 /
type4

r4 / type4

r7 /
type3

r8 /
type5

r6 /
type3

{n2}

{n1}

{n2, n4}

{n3, n4}

{n5}

PPI Network N1

p2 p3

p5

p1

r3

r6

M1

r1

p2 p3

p5p4

p1

r3

r1

r7

M2

Fig. 2 Entire process of rule evaluation

A. Rule expansion
Target rules for evaluation, ‘rule1’ and ‘rule2’, are expanded
into a series of simple rules consisting of pure triples and
operators. ‘rule+’ is generated as a real rule for evaluation by
expanding the target rules.

B. Node evaluation
Each node ‘nj’ included in ‘rule+’ is indexed by matched
proteins {pj}. According to the properties of nodes defined in
a triple, each node may be matched and evaluated with more
than one protein −for example, n2 {p2, p4}.

In case the node is defined as a protein, it is indexed directly,
because each protein has a detailed information using
SWISS-PROT[9]. Therefore, an identifier coincides with
exactly one protein. In case the node is defined as GO terms,
the node(ni) can be matched with several proteins that have
conceptually similar ‘annotation’(nj) as well as exactly the
same. For examples, if ‘ni’ is defined with ‘regulation of
exocytosis’, ‘annotation’(nj) of matched proteins can be
defined with more generalized terms of the ‘ni’, such as
{‘exocytosis’/0.74, ‘regulation of transport’/0.74,…}, and
more specific terms such as {‘positive regulation...’/0.74,
‘…calcium ion- dependent’/0.54,…}.

C. Triple evaluation
A triple is evaluated against a set of modules satisfying each
of its conditions. For that reason, evaluation is performed by
calculating similarity between the triple and the modules. The
similarity ‘S’ is calculated by combining the similarity ‘S1’
between two nodes of the triple and the two proteins of a
relation in a module, and the similarity ‘S2’ between the
relation type of the triple and the relation of each module.

Similarity between nodes in the triple and protein in the

relation is evaluated using the index nj that is made in the
previous step, and matched relations are indexed by ti. For
example, in Fig. 2, t1 = <n1, n2, type1> is evaluated as follows:
With n1 {p1} and n2 {p2, p4}, two relations, r1 = <p1, p2,
type1> between ‘p1’ and ‘p2’, r2 = <p1, p4, type1> between ‘p1’
and ‘p4’, are identified. Since the type of ‘r1’ and ‘r2’ are
matched with the type of ‘t1’, {r1} and {r2} match the triple
‘t1’.

D. Operator evaluation
The rule is evaluated by applying operations to a set of
modules. These operations are determined by operators
defined in the rule.

First, ‘*’(Association) is used to detect modules composed of
relations that match two given rules and connected directly
between these matched relations. For example, rule = t1 * t2,
where t1 = <n1, n2, type1> and t2 = <n2, n3, type2>, is evaluated
as follows; by cross union between t1 {r1}, {r2} and t2
{r3}, two modules, {r1, r3} and {r2, r3}, are matched. Among
them, {r1, r3} is selected, because ‘r1’ and ‘r3’ is connected
through protein ‘p2’, but there is no connection between ‘r2’
and ‘r3’.

Next, ‘•’(Arbitrariness) is used to detect modules composed
of relations that match two given rules. For example, the rule
= (t1 * t2) • t3 where (t1 * t2) {r1, r3} and t3 {r6}, {r7} is
evaluated as follows; by cross union between t1 * t2 and t3,
two modules, {r1, r3, r6} and {r1, r3, r7}, are obtained. Next, as
a final result of ‘rule+’, two modules are suggested; {r1, r3, r6}
consists of all connected relations, while {r1, r3, r7} is
composed of two separate sub-graphs (see Fig. 2).

t1 t2 rule* ⇐

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

r3

r2

X
(no connection)

RESCTRICTION = [DISTANCE(p4, p3) < 3]

RESCTRICTION

union union

p4

p3

r4

r7

r6

path1

path2
Fig. 3 Evaluation process of t1 *RESTRICTION t2

By imposing on the ‘*’ operator constraints of connection
between two rules, it is also possible to detect modules that
are indirectly connected. For example, rule = t1 *RESCTRICTION
t2, and RESCTRICTION = [DISTANCE(n4, n3) < 3] may
detect modules that are connected directly and indirectly
between ‘t1’ and ‘t2’. This constraint specifies that ‘n4’ and
‘n3’ need to be connected by * with the number of intervening
nodes less than 3. ‘n4’ is matched with two proteins ‘p3’ and
‘p4’, and ‘n3’ is matched only with ‘p3’. Since ‘t1’ is evaluated
only with ‘p4’, this constraint is translated into
RESCTRICTION = [DISTANCE(p4, p3) < 3]. There are two
paths satisfying the restriction, path1 and path2; path1

5812

connects two modules via ‘r4’, and path2 via ‘r7’, ‘r6’.
Therefore, restricted cross union between ‘t1’ ,‘t2’, and the
paths is calculated as a {r2, r4, r3} and {r2, r7, r6, r3}. Directly
connected module {r1, r3} is also included in final result.

Logical operators express logical relationships between
modules matched with two rules. ‘¦’(OR) means union and
‘&’(AND) means intersection between two sets of modules.

V. DESIGN AND IMPLEMENTATION
There are three ways to define the rule of user-intended
functional module in the proposed method. First, users can
define the rule in text format as described in this paper.
Second, they can define it in visual format by representing
triples in terms of nodes and links. The operators may be
represented as several different graphical notations. Third,
user can write out all definitions related to the rule in the
XML format. Both the text form and the visual form of the
rule are transformed automatically to the XML format before
processing the rule.

Rule definition

Detected Modules

Fig. 4 Rule-based detection in the visual environment

Figure 4 shows the process of rule-based detection in the
visual environment. The rule represents a part of
“Parkinson’s disease” pathway and defines with various
properties of protein node, such as ID, protein name, gene
name, and protein function using GO terms. Each solid line
represents a triple and each connection between two solid line
represents the ‘*’ operation. Dotted line between two protein
nodes represents the ‘*’ operation with path constraints.
Disconnected graph means the ‘•’ operation between two
disconnected sub-graphs.

Fig. 5 XML Schema for representing the rule

Figure 5 shows the XML schema for representing the rules
and storing the defined rules into a knowledge base. The
‘RuleSet’ consists of a set of rules used for representing the
rules. ‘SingleRule’ is used for referencing a triple and a
predefined rule. ‘CompositeRule’ is needed for defining a
rule with operators between predefined rules.

VI. CONCLUSIONS AND FUTURE WORKS
In this paper, we designed and implemented a rule-based
method for detecting meaningful functional modules in a
large and complex PPI network. On a visualized environment,
rules are used to express the biological features of the
modules in terms of triples and operators between the triples.
The former represents conceptual relations reifying the
protein interactions of a module, and the latter defines the
structure of the module with the relations. Our method may
be applied to other related researches in three directions; first,
once representing the general domain knowledge of a known
module into a rule, users can easily capture proteins included
in the module as well as the concrete structure of their
interactions. Second, by detecting complex modules with the
corresponding composite rules, to analyze the interaction
between the modules is also possible. Third, by applying the
rule to the other networks of different species, user can
predict similar functional modules in other species.

Although we proposed basic rule operators, additional rule
operators are required to naturally express user intention.
Additionally, we may need more sophisticated methods to
precisely estimate the similarity between triples and protein
interaction relations using the other information such as
protein’ s amino acid sequence and protein structure.

REFERENCES
[1] Ravasz E, Somera AL, Mongru DA, Oltvai ZN, and Barabasi AL,

“Hierarchical organization of modularity in metabolic networks.”,
Science., 2002, 297(5586):1551-5.

[2] Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, and Sakaki Y, “A
comprehensive two-hybrid analysis to explore the yeast protein
interactome.”, Proc. Natl Acad. Sci., 2001, 98(8):4569-74.

[3] Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, et al.,
“Functional organization of the yeast proteome by systematic analysis
of protein complexes.”, Nature. 2002, 415(6868):141-7.

[4] Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, et al., “Systematic
identification of protein complexes in Saccharomyces cerevisiae by
mass spectrometry.”, Nature., 2002, 415:180-183

[5] Bader GD and Hogue CW, “An automated method for finding
molecular complexes in large protein interaction networks.”, BMC
Bioinformatics., 2003, 4:2.

[6] Leser U., “A query language for biological networks.”, Bioinformatics.,
2005, vol.21 Suppl. 2:ii33-ii39.

[7] Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M, “The KEGG
resource for deciphering the genome.”, Nucleic Acids Res., 2004,
32(Database issue):D277-80.

[8] Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, et al., “The
Gene Ontology (GO) database and informatics resource.”, Nucleic
Acids Res., 2004, 32(Database issue):D258-61.

[9] Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, et al.,
“The SWISS-PROT protein knowledgebase and its supplement
TrEMBL in 2003.”, Nucleic Acids Res., 2003, 31(1):365-370.

5813

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

