Can we use ¹H MRS shimming values to obtain ³¹P spectra?

R.H. Wu, Member, IEEE, G. Guo, Y.P. Zhang, H. Tran, K. terBrugge, D. Mikulis

Abstract—The perfect shimming of ³¹P magnetic resonance spectroscopy (MRS) is not easy in vivo. The purpose of this study was to examine the feasibility of using ¹H MRS shimming values to obtain ³¹P spectra in a same sequence. Both phantom and volunteer studies were carried out in this study. Phantom was a sphere filled with physiological metabolites of brain. In vivo study was performed on 4 healthy volunteers. The studies were performed on a 3-T GE scanner. A same localizer and a same cursor were used for both ¹H and ³¹P scans. A spin echo MRS sequence was utilized for both ¹H scans with a standard head coil and ³¹P scans with a GE service coil. ¹H scan was performed using first and automatic shimming and water linewidth (FWHM) of 3 Hz for phantom and 5 Hz for the volunteer were obtained. Shimming values of ¹H scan in x, y, z directions were copied to ³¹P scan. A routine procedure of ³¹P scan without value coping was also performed. Spectra were analyzed using SAGE/IDL program. Signal to noise ratio (SNR) was defined as the ratio of the signal height / maximum noise height. Good ¹H spectra and ³¹P spectra were obtained for both phantom and volunteer studies. The ³¹P spectra with ¹H MRS shimming values were similar with the ³¹P spectra obtained with routine procedure. Lower SNRs of ³¹P spectra were obtained in phantom with ¹H MRS shimming values, compared with routine procedure scan. Average SNR for Pi of ³¹P spectra was 7.45:1 in the volunteer study with routine procedure, and 7.275:1 with ¹H MRS shimming values. ¹H MRS shimming values can be used to obtain useful ³¹P spectra in a same sequence.

I. INTRODUCTION

The advantage of using ³¹P magnetic resonance spectroscopy (MRS) over sample metabolic analyses arises from its non-invasive nature, and

Shantou University Medical College, Shantou, China (corresponding author: rhwu@stu.edu.cn). RHW and GG are also visiting scholars in the University of Toronto, Canada

continuous spectra to be obtained from tissue in real-time. ³¹P MRS can provide important information on energy metabolism concerning such factors as phosphocreatine (PCr) and adenosine triphosphate (ATP) concentrations, intracellular pH, and rate constant of creatine kinase (CK) reaction, etc. ³¹P MRS has been utilized in many organs and tissue of human body.

Unlike ¹H MRS where strong water signal is a good reference for shimming, in vivo ³¹P MRS has no any strong signal as a good reference for shimming. In stead, useful metabolite signals are often difficult to be detected from the beginning of ³¹P MRS procedures. The perfect shimming of ³¹P magnetic resonance spectroscopy (MRS) is not easy in vivo^{1,2}. It has been an acceptable procedure that ¹H MRS shimming is performed before ³¹P MRS procedure and ¹H MRS shimming result is used in ³¹P MRS¹⁻⁴. However, the resonance frequency is different between ¹H MRS and ³¹P MRS. We should study whether there is a big difference between ¹H MRS shimming and ³¹P MRS shimming. The purpose of this study was to examine the feasibility of using ¹H MRS shimming values to obtain ³¹P spectra in a same sequence.

II. MATERIAL AND METHODS

Both phantom and volunteer studies were carried out in this study. Phantom (Braino, General Electric Medical Systems) was a sphere filled with an aqueous solution including 50 mM potassium phosphate and 1 mlMagnevist (Berlex Laboratories, Wayne, NJ). In vivo study was performed on 4 healthy volunteers (3 male and 1 female, 27-46 years old). All procedures were approved by the research committee at the University of Toronto. All volunteers were from MR research team. The studies were performed on a 3-T GE scanner (General Electric Medical Systems, Milwaukee, WI). The phantom study was performed before volunteer study every time. A same localizer and a same cursor were used for both ¹H and ³¹P scans. The localizer was obtained with a gradient each sequence. A spin echo MRS

Manuscript received April 3, 2006. This work was supported in part by the National Science Foundation of China (30270379/C010511 and 30170262/C010511) and Li Ka Shing foundation, Hong Kong This work was mainly done in the University of Toronto, Canada.

RHW, GG and YPZ are with Department of Medical Imaging,

HT, KTB and DM are with Department of Medical Imaging, the University of Toronto, Canada

sequence was utilized for both ¹H scans with a standard head coil and ³¹P scans with a GE service coil. TR 2000 msec and TE 35 msec were kept same for both ¹H scans and ³¹P scans with 128 scan averages. ¹H scan was performed using first and automatic shimming and water linewidth (FWHM) of 3 Hz for phantom and 5 Hz for the volunteers were obtained. Shimming values of ¹H scan in x, y, z directions were copied to ³¹P scan. The standard head coil was unplugged when ³¹P scan without ¹H value coping was also performed for both phantom and volunteer studies.

Data were processed offline using the SAGE/IDL software. Baseline and phase corrections were performed. The signal height of inorganic phosphor and maximum noise height were measured. Signal to noise ratio (SNR) was defined as the ratio of the signal height / maximum noise height⁵.

III. RESULTS

Good ¹H spectra and ³¹P spectra were obtained for both phantom and volunteer studies. The general quality of the ³¹P spectra from phantom is shown in Fig. 1. Figure 1A displays the ³¹P spectra with ¹H scan value coping and Figure 1B without ¹H scan value coping. In general, the quality of ³¹P spectra without ¹H scan value coping was better than the ³¹P spectra with ¹H scan value coping. Lower SNRs of ³¹P spectra were obtained in phantom with ¹H MRS shimming values, compared with routine procedure scan.

Fig. 1. Figure 1A was 31p spectra with 1H value coping. Figure 1B was 31P spectra without 1H value coping. B is better than A

The ³¹P spectra obtained with ¹H MRS shimming values were similar with the ³¹P spectra obtained with routine procedure in volunteer studies. An example of the ³¹P spectra from a volunteer is shown in Fig. 2. Figure 2A displays the ³¹P spectra with ¹H scan value coping and Figure 2B without ¹H scan value coping. From visual inspection, there is no big difference concerning quality. Average SNR for Pi of ³¹P spectra was 7.45:1 in the volunteer study with routine procedure, and 7.275:1 with ¹H MRS shimming values. Table 1 summarizes the detail numbers.

Table 1. SNRs for Pi of phantom and volunteer studies

	phantom		volunteer	
	with	without	with	without
1	36.7:1	59.2:1	7.3:1	7.5:1
2	42.4:1	63.3:1	6.5:1	6.1:1
3	34.6:1	55.7:1	7.4:1	7.6:1
4	37.5:1	61.9:1	7.9.1	8.6:1
mean 37.8:1		61.9:1	7.275:1	7.45:1

Fig.2. Figure 2A was ³¹p spectra with ¹H value coping. Figure 2B was ³¹P spectra without ¹H value coping. B is similar with A

IV. Discussion

Spectral resolution is determined primarily by three factors. First, the transverse relaxation time (T2) of the metabolite is inversely proportional to the ideal peak width. Second, the B0 separation between peaks ~in Hz! increases linearly with magnetic field strength. Third, the local magnetic field inhomogeneities widen and distort the spectral lines from their ideal Lorentizian forms. Maximum homogeneity is accomplished by adjusting DC currents in the gradient coils and room temperature shim coils. The name for this process is "shimming".⁶ From our studies, we noticed that ³¹P spectra obtained with ¹H MRS shimming values were similar with the ³¹P spectra obtained without 1H values in volunteer studies. The difference of resonance frequency seems not an important issue. ¹H MRS shimming values can be used to obtain useful ³¹P spectra in a same sequence.

In clinical works, useful metabolite signals are often difficult to be detected from the beginning of ³¹P MRS procedures. The perfect shimming of ³¹P MRS is not easy in vivo. In order to solve this problem, many efforts have been made previously. One effort is to use double-tuned coils. A high signal-to-noise ratio (SNR) in ³¹P MRS can be obtained only with good B0-field homogeneity and optimal coil sensitivity. This demands double-tuned coils with a highly sensitive 31P channel and an additional 1H channel for 1H-magnetic resonance imaging, shimming, 1H decoupling, and nuclear Overhauser enhancement (NOE). A comparison with conventional, single-tuned coils shows that, in spite of double tuning, there is no significant loss in ³¹P sensitivity while the ¹H channel provides the requested performance.^{1-2, 7-9} But great effort is needed to build the coil if the commercial double-tuned coils are not wealth while.

V. Conclusion

The purpose of this study was to examine the feasibility of using ¹H MRS shimming values to obtain ³¹P spectra in a same sequence. Both phantom and volunteer studies were carried out in this study. Our results shown that the ³¹P spectra with ¹H MRS shimming values were similar with the ³¹P spectra obtained with routine procedure in volunteer studies. ¹H MRS shimming values can be used to obtain useful ³¹P spectra in a same sequence.

REFERENCES

- Matson GB, Vermathen P, Hill TC. A Practical Double-Tuned 1H/31P Quadrature Birdcage Headcoil Optimized for 31P Operation. Magn Reson Med 1999; 42:173–182
- [2] Lanz T, von Kienlin M, Behr W, Haase A. Double-tuned four-ring birdcage resonators for in vivo 31P-nuclear magnetic resonance spectroscopy at 11.75 T. MAGMA. 1997 Sep;5:243-246.
- [3] Gao F, Huang Z, Fang H, et al. The value of magnetic resonance spectroscopy in diagnosing myocardial infarction. Chinese Journal of Radiology 1999; 33 31-35
- [4] Gao F, Zhao H, Suo L, et al. Experimental study of 31P MR spectroscopy in vitro canine myocardium. Chinese Journal of Radiology 1999; 33 425-427

- [5] Golding EM, Golding RM. A Mathematical Assessment of the Precision of Parameters in Measuring Resonance Spectra. J Magn Reson 1998; 135:380-405.
- [6] Drost DJ, Riddle WR, and Clarke GD. Proton magnetic resonance spectroscopy in the brain: Report of AAPM MR Task Group #9. Med. Phys 2002; 29:2178-2197
- [7] Zakian KL, Koutcher JA, Ballon D. A Dual-Tuned Resonator for Proton-Decoupled Phosphorus-31 Chemical Shift Imaging of the Brain. Magnetic Resonance in Medicine 1999; 41:809–815
- [8] Kuliszkiewicz-Janus M, Mariusz A, Tuz MA, Baczynski S. Application of 31P MRS to the analysis of phospholipid changes in plasma of patients with acute leukemia. Biochimica et Biophysica Acta 2005; 1737:11 -15
- [9] in 't Zandt HJA, Renema WKJ, Streijger F, et al. Cerebral creatine kinase deficiency influences metabolite levels and morphology in the mouse brain: a quantitative in vivo 1H and 31P magnetic resonance study. Journal of Neurochemistry, 2004, 90, 1321–1330