
Abstract — Treatment of chronic conditions often creates the 
challenge of an adequate drug administration.  The intra- and 
inter-individual variability of drug response requires periodic 
adjustments of the dosing protocols.  We describe a method, 
combining Model Predictive Control for simulation of patient 
response and Reinforcement Learning for estimation of dosing 
strategy, to facilitate the management of anemia due to kidney 
failure.

I. INTRODUCTION

herapeutic drug delivery has long been recognized as a 
control problem [1]. In contrast to engineering fields, 
where the application of control methods has been quite 

successful, the nature of the drug dosing problem poses 
different challenges. The complexity of human body makes 
the development of an accurate mathematical model of the 
patient very difficult. In spite of this difficulty, the use of 
advanced control algorithms for drug delivery has been 
reported in the literature [2], [3], [4].  In [5], we simulated 
the use of Artificial Neural Network-based Direct Adaptive 
and Model Predictive Control for the management of renal 
anemia. We demonstrated that Model Predictive Control 
could improve the quality of anemia management, compared 
to currently used methods.  

In the clinical practice treatment of chronic conditions 
often has a form of a recurrent trial and error process. 
Typically, a standard initial dose is administered first and 
the patient is observed for a specific response.  The drug 
dose is then adjusted in order to improve the response, or to 
eliminate a potential side effect.  To emulate this process 
numerically, we simulated the anemia management using 
Reinforcement Learning methods, such as SARSA [6] and 
Q-learning [7].  We demonstrated that these algorithms were 
capable of estimating adequate dosing strategies in the 
simulated environment. 

Building upon the insights gained through [5] and [6], we 
present a combination of Model Predictive Control approach 
with Reinforcement Learning to establish a computer-based 
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system for decision support in chronic drug dosing. We 
introduce the reader to the problem of anemia management 
first. Next, we provide a refresher of Model Predictive 
Control and Reinforcement Learning, and describe the 
proposed approach. Subsequently, we show the results of a 
simulated anemia management to demonstrate the feasibility 
of the proposed method.  A summary and a discussion of the 
obtained results conclude the paper.   

II. METHODS

A. Anemia Management 
Anemia due to End Stage Renal Disease (ESRD) is a 

common chronic condition in hemodialysis patients [8]. It 
occurs due to an insufficient availability of a hormone called 
erythropoietin (EPO), which stimulates the production of red 
blood cells (erythropoiesis). Untreated, anemia can lead to a 
number of conditions including heart disease, decreased 
quality of life, and increased mortality. The preferred 
treatment of renal anemia consists of external administration 
of recombinant human erythropoietin (rHuEPO). The 
availability of (rHuEPO) greatly improved morbidity and 
mortality for hemodialysis patients.  Ninety percent of 
hemodialysis patients require rHuEPO for the treatment of 
their anemia. In the United States, the cost of rHuEPO for 
treating these 320,000 dialysis patients exceeds $1 billion 
annually [9]. The Dialysis Outcomes Quality Initiative of 
National Kidney Foundation recommends that the 
hemoglobin (Hgb) level in patients receiving rHuEPO be 
maintained between 11 and 12 g/dL. To follow these 
guidelines, dialysis units develop and maintain their own 
Anemia Management Protocols (AMP). 

The Anemia Management Protocols are developed and 
updated based on a population response. Achieving a 
desired outcome in an individual is complicated due to 
variability of response within patient populations, and 
concurrent medications and comorbidities, specific for each 
patient. Frequently, the dose recommendation provided by 
the protocol is adjusted based on physician’s experience and 
intuition.  All this makes the anemia management very labor 
intensive. We test the hypothesis that a computer-based 
decision support tool will simplify this process, while 
achieving a comparable or better treatment outcome.  
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B. Model Predictive Control 
A schematic diagram of the Model Predictive Controller 

(MPC) as applied to drug dosing is shown Figure 1. The 
controller contains two components, a predictive model of 
the patient and an optimizer for drug dose selection. The 
fundamental idea behind the MPC is to minimize a cost 
function related to the control goal [11], for example: 
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This example represents the cost function J as a sum of 
squared differences between desired responses yd and the 
responses predicted by the model ym, over a time period Hp,
after administering a dose (sequence) u’. The dose that 
minimizes the function J is administered to the patient and 
the process is repeated at the next dosing interval. 

Fig. 1. Schematic diagram of Model Predictive Controller as applied to drug 
dosing. The symbol y(k) represents patient’s response, ym(k) – predicted 
response, yd(k) – desired response, u(k) – recommended drug dose, u’(k) – 
tested drug dose (sequence), and k is a time index. 

The MPC approach requires the availability of a patient 
model. In this work, we use an Artificial Neural Network 
approach, as described in [10].  The most useful feature of 
the MPC with respect to the application to drug dosing is its 
ability to handle nonlinear control problems with time 
delays.  

C. Reinforcement Learning 
 Reinforcement Learning (RL) is a collection of methods 

for producing optimal decision strategies through a process 
of trial and error [12]. In RL, learning is performed by an 
agent whose actions affect its environment. Based on the 
long-term learning objective, each action of the agent is 
either rewarded or punished. The optimal strategy is 
estimated from past actions and their consequences. RL is a 
promising technique for adaptive control problems where 
learning and control are performed simultaneously. Figure 2 
shows a block diagram of an RL algorithm applied to the 
drug dosing problem, as described in [6] and [7]. The 
operation of this algorithm is centered around the so-called 
Q-table, which stores degrees of preferability for each action 
at a given state, i.e. state-action values, Q. Each action, i.e. 
drug dose, is followed by the observed response. This 

response is evaluated with respect to the long-term goal. For 
example, if the drug dose produced a favorable response, it 
would be rewarded (reinforced). On the other hand, if the 
observed response was undesired, the drug dose would be 
penalized. This feedback modifies relevant entries in the Q-
table. The dosing policy, which specifies how to administer 
the drug based on patient response, is estimated by 
extracting the most preferable dose-response combinations 
from the Q-table. 

Fig. 2.  Schematic diagram of Reinforcement Learning as applied to drug 
dosing. The Physician (agent) applies drug dose (action) to the Patient 
(environment) and observes Response (state). This information is used to 
update the Q-table and extract the dosing policy. 

D. Model Predictive Control with Reinforcement 
Learning for Drug Delivery  
The optimal control, u, in the MPC is found through an 

optimization process.  When a linear model is used to 
predict the response, ym, the optimal control u can be derived 
analytically.  However, nonlinear models (such as Artificial 
Neural Networks) require much more involved optimization 
methods. Possible solutions involve Dynamic Programming, 
calculus of variations, optimization of a parametric control 
representation, and exhaustive search methods. The use of 
RL methods in MPC has recently been proposed in [13]. 
The authors formulated the MPC in terms of a Markov 
Decision Process and defined the cost function as a sum of 
state values, updated by the Temporal Difference method, 
TD( ) [12].  

Building upon the theoretical considerations presented in 
[13], we now present an approach that combines the most 
important features of the MPC and RL methods. We first 
described the use of the RL methods for drug delivery in [6]. 
We simulated estimation of drug dosing strategy using the 
on-policy RL method, SARSA [12]. In [7], we investigated 
the use of the off-policy method, Q-learning [14], in a 
simulated real time anemia management. We found that both 
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methods delivered performance comparable to that of a 
simulated Anemia Management Protocol. In this paper, we 
will use the on-policy method, SARSA, as the optimization 
mechanism for the drug dose determination in Model 
Predictive Control applied to management of renal anemia.  

In SARSA, the learning progresses along an episode by 
observing state transitions and immediate reinforcements, 
and by adjusting the corresponding state-action values. If an 
action a, taken in state s, results in a transition to state s’, the 
next action being a’, then the quantity  

asQasQr ,',' ,    (2) 

is a correction of the state-action value, Q(s,a). The quantity 
r represents the reinforcement received for state transition 
from s to s’. The coefficient  is called a discount factor and 
determines the value of future corrections. If it is 0, only 
immediate rewards are maximized. A value close to 1 
implies more focus on long term reward maximization. 
Following the TD(0) method used here, the state-action 
values are updated by the following formula 

asQasQrasQasQ kkkk ,',',,1 .  (3) 

The learning rate, , is selected from an interval 0 to 1 and 
monotonically decreased as the learning progresses.  

After the state-action values update is complete, a new 
policy is extracted from the Q-table using the -greedy 
approach [12]. If we represent the policy by (s), the best 
rated actions are selected with probability 1- , (for 

between 0 and 1), 

),(maxarg asQs
a

.      (4) 

Conversely, random actions are selected with probability .
The -greedy approach enables exploration of the state-
action space, which is a very important component of the 
optimization process. To be able to use SARSA for the dose 
optimization in MPC-based drug delivery, we represent the 
minimization of the cost function as the dual problem of 
maximizing the long term reinforcement.  

We formulate the learning problem as follows. The state 
vector s contains two components, current hemoglobin level, 
Hgb, and last rHuEPO dose, EPO. The recommended 
rHuEPO adjustment,  EPO, is the action. We use the 
following reinforcement  

     .5.1141 2Hgbr       (5) 

This function sends a positive reinforcement to any action 
driving the hemoglobin levels to, or maintaining it within 
the range 11 to 12 g/dL. If the hemoglobin level is outside 
this range, the corresponding action is penalized. This 
reinforcement promotes hemoglobin levels close to the 
median of the target range, 11.5 g/dL. The goal of the policy 
is to maximize the sum of the reinforcements over a period 
of time, Hp. The optimization episodes are repeated for a 
pre-specified number of times, decreasing the learning rate 

, and the probability of selecting a random action, after
each episode.

III. EXPERIMENTAL RESULTS

We collected data from 105 hemodialysis patients treated 
at the Division of Nephrology, University of Louisville in 
the year 2005. The data contained monthly hemoglobin 
levels and rHuEPO doses.  We used these data to develop 
dose-response models of the patients, as described in [10]. 
We implemented the models as Multilayer Perceptron 
networks predicting the hemoglobin levels one month ahead, 
based on past 3 monthly rHuEPO doses and hemoglobin 
levels. We divided the data into 51 random, equally sized 
training and testing sets, and created a single model for each 
data set combination. We then randomly selected one of the 
models to serve as the MPC predictive model, and used the 
remaining 50 to simulate individual patients. This emulated 
the mismatch between the MPC model and the patient that 
occurs in real life. By using the same predictive model for 
all simulated patients, we mimicked the population approach 
to drug administration. 

We set the length of a single optimization episode, Hp, to 
12 months. The effect of a single rHuEPO dose can last as 
long as 2 months. We decided that 12 months was sufficient 
time length to thoroughly evaluate a single policy. We set 
the learning rate, , to 0.9, the discount rate, , to 0.99, and 
the probability of selecting a random action, , to 99%. The 
number of optimization episodes during one MPC step was 
determined through trial and error. We found 1200 episodes 
sufficient to achieve the convergence of the dosing policy.  
We decreased  by the factor of 0.995 and  by 0.1% after 
each episode. We limited the minimum value of  to 1%. We 
evaluated the MPC for each simulated patient over a period 
of 12 months, i.e. rHuEPO dose adjustment intervals.  

To establish a benchmark, we simulated the anemia 
management using an algorithmic implementation of the 
clinical protocol (AMP) used at the Division of Nephrology 
in the year 2002, on the same 50 patient models described 
above.

The simulation results are illustrated in Figures 3 and 4 
and summarized in Table I. We found that 10 out of the 
simulated 50 patients achieved hemoglobin levels above 
target range without receiving any rHuEPO. We decided not 
to include these individuals in the statistical analysis, as 
neither the protocol, nor the proposed MPC algorithm 
influenced their hemoglobin level. The top graph in Figure 3 
shows a time plot of mean hemoglobin levels in the 40
patients (continuous line) and their standard deviations 
(whiskers) when the rHuEPO doses recommendations are 
produced by the MPC algorithms. The bottom graph shows 
the mean rHuEPO dose recommendations (continuous line) 
and their standard deviations. Figure 4 shows the same data 
for dose recommendations produced by the simulated AMP.  
These figures and Table I show that the proposed MPC 
approach and the AMP achieve the same mean hemoglobin 
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level in the simulated patient population. Compared to the 
AMP, the MPC achieves marginally better hemoglobin 
variability and rHuEPO utilization. Figure 3 also shows that 
the dose recommendations produced by the MPC are much 
more consistent than those produced by the AMP. The mean 
hemoglobin level achieved by the MPC shows a tendency to 
converge toward the target range. The mean hemoglobin 
level achieved by the simulated AMP fluctuates around the 
upper boundary of the target range. The inability to maintain 
the hemoglobin within the target range by the AMP can be 
attributed to the fact that we used a version from the year 
2002. On the other hand, the patient models were created 
from data collected in 2005.  

Fig. 3.  Hemoglobin response within the simulated population (top) and 
rHuEPO dose as recommended by the MPC (bottom). Continuous lines 
represent mean values, whiskers represent standard deviations. Target 
hemoglobin range is shown by dotted lines. 

Fig. 4.  Hemoglobin response within the simulated population (top) and 
rHuEPO dose as recommended by the AMP (bottom). Continuous lines 
represent mean values and the whiskers represent standard deviations. 
Target hemoglobin range is shown by dotted lines. 

TABLE I
STATISTICAL SUMMARY OF THE SIMULATIONS (N = 40) 

Method AMP MPC 
Average Hgb (g/dL) 12.0 [ 10.1  13.80 ] 12.0 [ 10.4  13.70 ] 
Hgb variability (g/dL) 0.52 [   0.0    1.28 ] 0.49 [   0.0    0.98 ] 
Total rHuEPO (Units) 328,000  299,000  

IV. CONCLUSIONS

We proposed an approach to computer-assisted drug 
delivery combining Model Predictive Control for simulation 
of patient response and Reinforcement Learning for 
optimization of the dosing strategy. We evaluated this 
approach through numerical simulations of anemia treatment 
with recombinant human erythropoietin using patient 
models created from clinical data. We show that the 
proposed algorithm performs as well as the clinical protocol 
for anemia management in terms of mean hemoglobin level 
and improves upon the protocol in terms of hemoglobin 
variability.  
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