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Abstract— Non-Cartesian sampling is widely used for fast
magnetic resonance imaging (MRI). The well known gridding
method usually requires density compensation to adjust the
non-uniform sampling density, which is a major source of
reconstruction error. Minimum-norm least square (MNLS)
reconstruction, on the other hand, does not need density com-
pensation, but requires intensive computations. In this paper, a
new version of MNLS reconstruction method is developed using
maximum likelihood and is speeded up by incorporating novel
non-uniform fast Fourier transform (NUFFT) and bi-conjugate
gradient fast Fourier transform (BCG-FFT) techniques. Studies
on computer-simulated phantoms and a physically scanned
phantom show improved reconstruction accuracy and signal-to-
noise ratio compared to gridding method. The method is shown
applicable to arbitrary k-space trajectory. Furthermore, we find
that the method in fact performs un-blurring in the image
space as an equivalent of density compensation in the k-space.
Equalizing MNLS solution with gridding algorithm leads to new
approaches of finding optimal density compensation functions
(DCF). The method has been applied to radially encoded
cardiac imaging on small animals. Reconstructed dynamic
images of an in vivo mouse heart are shown.

I. INTRODUCTION

In magnetic resonance imaging (MRI), the recorded signal
in the spatial-frequency space (known as k-space) is propor-
tional to the Fourier transform of the transverse magnetiza-
tion. Non-Cartesian trajectories, such as radial and spiral,
have recently gained increased attention in various appli-
cations including functional brain imaging, hyperpolarized
gas imaging, contrast-enhanced MR angiography and cardiac
imaging. High-fidelity image reconstruction from these non-
Cartesian samples is challenging. The existing reconstruction
methods generally fall in two categories: gridding reconstruc-
tion and minimum-norm least square reconstruction.

Both data-driven and grid-driven gridding methods
[1][2][3][4] first interpolate the non-Cartesian samples to
Cartesian grid and then use FFT. The data-driven gridding
method [1][2] convolves interpolation kernels with each non-
Cartesian sample, and it requires a pre-weighting (also called
density compensation) on the raw data to compensate for the
non-uniform sampling density. Density compensation func-
tions (DCF) can be determined by Jacobian [5], convolution
of delta functions located at k-samples with the interpolation
kernel [2], analytical solutions [6] or Voronoi diagram [7].
Unfortunately, a mathematically ideal DCF usually does not
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provide highest image quality. Pipe et al. [8] suggested
an iterative approach to find DCF that satisfies necessary
conditions. On the other hand, grid-driven gridding methods
such as URS/BURS [3] find interpolation window for each
resampled Cartesian nodes by inverting the interpolation
coefficient matrix. Relating the grid-driven method and the
data-driven method, Sedarat et al. [4] suggested to find
optimal DCF through matrix approximation and singular
value decomposition (SVD), but the computational cost is
still intense.

Alternatively, minimum-norm least square methods try to
minimize the energy of the reconstruction error. Walle et al.
[9] introduced a continuous to discrete mapping concept and
utilized SVD to compute the Moore-Penrose pseudoinverse.
The complexity is significant, which limits it to applications
with small number of samples. Nevertheless, the inversion
needs to be performed only once for a given sampling
pattern, and in fact, that inverted matrix contains the exact
DCF. The normal DCF used in data-driven gridding methods
is only an approximation of its diagonal.

Different from [9], this work uses a different version of
least square formulation derived using maximum likelihood
theory. Due to the block Toeplitz nature of the matrix to
be inverted, it can be computed efficiently using iterative
method. BCG-FFT method [10] and NUFFT [11][12] are uti-
lized to reduce the computational complexity. This Toeplitz
Maximum Likelihood (TML) method is an extension of the
idea of Liu et al’s 1D non-uniform inverse fast Fourier trans-
form (NUIFFT) [13] and we noticed similar ideas had been
mentioned very recently by [14] and [15] in their iterative
reconstruction algorithms. This formulation does not require
a DCF, and thus is generally applicable to arbitrary k-space
trajectory. We also discuss the physical interpretation of this
method and show that the initial no-density-compensated
image is sharpened during each iteration by the un-blurring
matrix. This indicates that compensating the sampling den-
sity in the k-space (e.g. gridding method) is equivalent to
un-blurring the reconstructed image in the image space.
Based on that, alternative approaches to optimize DCF are
suggested. The developed TML method is compared to the
regular density compensated gridding methods on computer
simulation studies, as well as physical scans.

II. TOEPLITZ MAXIMUM LIKELIHOOD METHOD

The discretized MRI signal model without considering
field inhomogeneity or sensitivity is

s(km) ≈ ∑
x

I(x)e−i2πkm·x +Ns(km) (1)
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where Mxy (equivalent to the image I) is the transverse
magnetization in d-dimensional spatial domain x, k is the
k-space trajectory, and Ns(k) is the measurement noise. A
compact version of (1) becomes

s = Ai+ ns (2)

Where s and i are s and I aligned as vectors, and A is the
system transfer matrix with elements an,m = e−i2πkm·xn .

Assuming the measurement noise in MRI is independent
and has Gaussian distribution, the probability density func-
tion of the noise is therefore given by

P(ns) =

(
1

2πσ2
s

)M

e−((s−Ai)†(s−Ai))/2σ 2
s (3)

where M is the total number of k-space samples. Likelihood
maximization of (3) leads to minimum-norm least square
solutions

iML = A† (
AA†)−1

s, (4)

or

iML =
(
A†A

)−1
A†s (5)

Note (4) is the formula version used by [9]. Matrix
operator AA† has the dimension of sample number, and
its elements have closed-form expressions. However, either
solving it by pseudoinverse or iterative methods involves
intensive computations. In contrast, in this paper, we use
the second formula version (5). The direct inversion of A†A
is prohibitively expensive for large image sizes and in high
dimensions. However, it is noticed that A†A is a block-
Toeplitz matrix and its element can be written as(

A†A
)

p,q = ∑
m

ei2πkm·(xnp−xnq) = αnp−nq (6)

where np,nq ∈ (−Nd/2,Nd/2−1)d. Furthermore, we define
α−n = α∗

n , so that another half of the elements calculation is

saved. As a result, only 2
d
∏

p=1
Np elements out of

d
∏

p=1
(Np)

2

are independent, and they can be efficiently calculated with
NUFFT-2 [16].

g = A†s = ∑
m

s(km)ei2πkm·x (7)

(7) can also be evaluate efficiently using d-dimensional
NUFFT-2 and iML will then be obtained by solving

g
np

= ∑
nq

αnp−nqInq = F
−1(F (α)F (I)) (8)

iteratively. Bi-conjugate gradient method is used since A†A is
in general non-symmetric. In each iteration, the calculation of
the convolution can be speeded up by regular d-dimensional
FFT and IFFT. Note A†A does not vary from iteration to
iteration, thus the FFT of α needs to be calculated only once
for all iterations. As a result, this Toeplitz based Maximum
Likelihood (TML) reconstruction algorithm includes only
two NUFFT-2 evaluations and several iterations of regular
FFT and IFFT.

III. SIMULATION STUDY

A. One-Dimensional Case

We start the simulation study with 1D “image” I(x) for
better illustration of the algorithm. The spatial-frequency
response s is sampled at M arbitrary locations km = (m +
v)/M,m = −M/2,1, · · · ,M/2 − 1, where v is a random
number uniformly distributed in (−0.5,0.5). Notice this
general non-Cartesian sampling pattern can result in very
high non-uniformity, therefore violation of Nyquist criterion.
The noise-free signal samples are calculated as

s(km) = ∑
n

I(xn)e
−i2πkm·xn . (9)
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Fig. 1. Comparison of gridding method (a) and Toeplitz based maximum
likelihood method (b) on a boxcar 1D phantom image.

Fig. 1 shows the reconstruction results using the proposed
TML method (IT ML) and density compensated gridding
method (IGD). We formulated the density compensated grid-
ding method as

IGD = ∑
n

ΔkmI(xn)e
i2πkm·xn . (10)

In Fig. 1, the reconstruction errors, defined as eL2 =
‖ITML − I‖2/‖I‖2, are 16.16% for the gridding and 0.0013%
for TML, respectively. The poor DCF estimation for the
gridding method at such a high non-uniformity is the main
source of error. In comparison, TML shows significant image
quality improvement over gridding and the reconstruction
takes only 0.08 second (CPU: AMD ATHLON 2600+) with
21 BCG-FFT iterations.

B. Two-Dimensional Case

In the 2D simulation study, we first implemented practical
trajectories, including radial and spiral, on a Shepp-Logan
phantom. 400 radial rays were simulated for a 128× 128-
sized phantom, and for spiral sampling, 16 interleaves were
used. Fig. 2 shows the reconstruction results using gridding
method and TML. In the gridding reconstruction, we used
Jacobian DCF [5] for radial sampling and Voronoi DCF [7]
for spiral sampling. The difference images are shown on a
1/10 grayscale. For radial sampling, the reconstruction errors
are 3.20% for gridding and 0.05% for TML, which uses 31
BCG-FFT iterations. For spiral, the reconstruction errors are
6.54% for gridding and 2.86% for TML.

To demonstrate that the proposed method works for ar-
bitrary k-space sampling while gridding method might not,
we generated a 2D random sampling pattern comparable
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Fig. 2. Comparison of reconstruction results using gridding method and
TML method on radial (a)(b)(c)(d) and spiral (e)(f)(g)(h) trajectories. (a)(e)
IGD(x), (b)(f) 10× |IGD(x)− I(x)|, (c)(g) IT ML(x), (d)(h) 10× |IT ML(x)−
I(x)|

to the 1D case. Fig. 3 shows the reconstructed image by
TML method, the difference image, and the line profile. The
reconstruction error is only 1.76%. It shows that the existence
of DCF is no longer a limitation, which provides the potential
to make the pulse sequence design more flexible and enable
new trajectories. In this case, DCF cannot be easily found
as “the area associated with each sample,” so we did not
include gridding method for comparison.
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Fig. 3. TML reconstruction of a randomly sampled 2D Shepp-Logan
phantom. (a) IT ML(x), (b) 10×|IT ML(x)− I(x)|, (c) center line profile.

SNR 100 50 40 30
Gridding 3.19% 3.20% 6.72% 12.26%

TML(radial) 0.05% 0.27% 0.86% 2.73%
TML(random) 1.76% 1.80% 2.38% 6.62%

TABLE I

COMPARISON OF RECONSTRUCTION ERRORS USING GRIDDING METHOD

AND TML AT DIFFERENT SNR LEVELS.

Reconstruction performance at the appearance of noise
was also examined by adding Gaussian noise to the simulated
k-space data. The reconstruction errors at different mea-
surement signal-to-noise ratio (SNR) levels are summarized
in Table. I. TML was applied to both radial and random
samplings, and gridding method was only applied to radial
sampling. We used linear scale for the SNR.

IV. PHYSICAL SCAN RESULTS

A. Phantom Scan

A cylindrical water tube phantom was scanned on a 2 Tesla
GE Oxford horizontal magnet. 2D radial encoding spin-echo
sequence was applied. We collected two data sets. One had
800 rays, which supports the Nyquist sampling rate, and the
other had 200 rays, which corresponds to an azimuthally
under-sampled case. Both data sets collected 186 samples
on each ray. Fig. 4 shows the reconstructed images side by
side. We measured the image SNR by

SNRI =

〈
I(x,x ∈ Rob j)

〉
√

1
M−1 ∑

xm∈Rbkg

(
I(xm)−

〈
I(x,x ∈ Rbkg)

〉)2
(11)

The well sampled case is of relatively higher SNR, and
thus Fig. 4(a) and (b) have very similar visual qualities,
though quantitatively TML reconstruction has an SNR 16.2%
higher. In comparison, for the 200-ray data set, the TML
generated image is visually better than the gridding one,
and the SNR is 1.54 times higher. We use image (b) as the
reference image and subtract it from images (c) and (d) to
create difference images (e) and (f).

(a) (c)

(b) (d)

(e)

(f)

5X

5X

Fig. 4. Comparison of reconstructions using gridding and TML methods
on a radial scan of a water phantom. (a) I(1)

GD , 800 rays (b) I(1)
T ML, 800 rays (c)

I(2)
GD , 800 rays (d) I(1)

T ML, 200 rays, (e) 5×|I(2)
GD− I(1)

T ML|, (f) 5×|I(2)
T ML − I(1)

T ML|.

B. In Vivo Scan

Fast non-Cartesian imaging technique has been favorably
used for cardiac imaging due to robustness against motion
and enhanced SNR. A 2D radially encoded data set was
acquired of a live mouse using a gated acquisition on a
7T magnet1. 8 dynamic images recoding a cardiac cycle
are acquired and 1800 rays were collected for each image
frame. These images were reconstructed using the Toeplitz
based maximum likelihood method and shown in Fig 5. Since
these dynamic images have a strong temporal correlation, we
actually use the first reconstructed image as the initial guess

1The authors would like to thank Elizabeth Bucholz and James Pollaro
of the Duke center for in vivo microscopy for performing the cardiac scans.
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of BCG-FFT iteration to speed up the rest reconstructions.
This turns out to be another advantage of TML method over
gridding method.

1 2 3 4

5 6 7 8

Fig. 5. Radially encoded in vivo mouse cardiac images reconstructed with
Toeplitz based maximum likelihood method.

V. ON DENSITY COMPENSATION

To establish the relationship between MNLS formulas and
the regular gridding algorithm, we use a consistent matrix
form

iGD = A†Ds (12)

for gridding reconstruction, where D is a diagonal density
compensation matrix with DCF as its diagonal elements
dii = d(ki). In fact, by comparing (4) and (12), we find
optimally D =

(
AA†

)−1
, which is not necessarily a diagonal

matrix. Therefore, gridding method actually approximates
matrix

(
AA†

)−1
with its diagonal.

Different from the gridding framework, formula (5) can be
interpreted as that operator A† reconstructs the image without
density compensation, and operator

(
A†A

)−1
tries to sharpen

the resulted blurred image. As opposed to the compensation(
AA†

)−1
or D in the k-space,

(
A†A

)−1
performs equivalent

role but in the image space. However, although matrix(
A†A

)−1
is also diagonal dominant, it can not be accurately

approximated by only its diagonal.
Approximating (5) by (12) with minimized reconstruction

error provides alternative solutions for optimal DCFs. First,
one could rewrite (5) as

iML = A†A
(
A†A

)−2
A†s (13)

and a similar matrix approximation as in [4] will lead to
optimal DCF solution

dii =
[A

(
A†A

)−1
A†]ii

[A†A]ii
(14)

Another approach is to equalize (5) and (12) and set s = 1,
so that we have

A†1 =
(
A†A

)
A†d. (15)

DCF vector d can be possibly solved with iterative methods.
In each iteration, A†d is calculated by NUFFT-2 and A†A
operator by FFT/IFFT. Note for both (14) and (15), the
density compensation found are generally complex.

VI. CONCLUSIONS

An accurate and fast Toeplitz based maximum likelihood
method is developed for non-Cartesian MR image recon-
struction. Compared to the gridding method, TML does not
need density compensation and thus is applicable to arbitrary
k-space trajectory. The simulation studies on radial, spiral,
and random sampling patterns showed improved reconstruc-
tion accuracy using TML method. The physical phantom
scan case also indicated that TML reconstruction resulted in
images with higher SNR than gridding reconstruction. The
proposed method has also been successfully applied to in
vivo cardiac data. The relationship between TML method
and gridding algorithm has been revealed and alternative
approaches to find optimal DCFs are suggested.
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