
Abstract— Understanding the molecular recognition between 
RNA and proteins is central to elucidation of many biological 
processes in the cell. Although structural data are available for 
some protein-RNA complexes, the interaction patterns are still 
mostly unclear. In this study, support vector machines as well 
as artificial neural networks have been trained to predict RNA-
binding residues from five sequence-derived features, including 
the solvent accessible surface area, BLAST-based conservation 
score, hydrophobicity index, side chain pKa value and 
molecular mass of an amino acid. It is found that support 
vector machines outperform neural networks for prediction of 
RNA-binding residues. The best support vector machine 
achieves 70.74% of prediction strength (average of sensitivity 
and specificity), whereas the performance measure reaches 
67.79% for the neural networks. The results suggest that RNA-
binding residues can be predicted directly from amino acid 
sequence information. Online prediction of RNA-binding 
residues is available at http://bioinformatics.ksu.edu/bindn/.

I. INTRODUCTION

nowledge of protein-RNA recognition is critical for 
understanding many biological processes, including 

RNA splicing, turnover and translation. For example, the 
cellular machinery for protein synthesis, or ribosome, is 
assembled from various ribosomal RNA (rRNA) and protein 
molecules. The recognition of rRNA by ribosomal proteins 
is important for both assembly and function of ribosomes. 
Furthermore, since some viruses have a RNA genome 
surrounded by capsid proteins and require the involvement 
of host proteins for replication, identification of the amino 
acid residues that bind to viral RNA may provide useful 
information for antiviral drug design [1]. 

Structural data of protein-RNA complexes provide 
valuable information for understanding the molecular 
mechanisms of protein-RNA recognition. Analysis of the 
available structures at the atomic level suggests that protein-
RNA recognition involves a complex combination of 
hydrogen bonds, van der Waals contacts and electrostatic 
interactions between amino acid residues and RNA bases 
[2].  As for residue-wise patterns, the basic amino acids, 
arginine and lysine, occur more frequently at protein-RNA 
interfaces than non-binding sites, whereas the acidic amino 
acids, aspartic acid and glutamic acid, are rarely found as 
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RNA-binding residues due to the negative charge of the 
RNA backbone [3].  

However, it is still challenging to predict RNA-binding 
residues directly from amino acid sequence information.  
The sequence-based approach is needed because sequence 
data are rapidly accumulating from many species but the 
structures of most proteins are not available. The problem 
for machine learning can be specified as follows: given the 
amino acid sequence of a protein that is supposed to bind 
RNA, the task is to predict which amino acid residues may 
be located at the interaction interface. Since both the 
structure of the protein and the sequence of the target RNA 
are assumed to be unknown, potential RNA-binding residues 
need to be predicted from the amino acid properties and 
local sequence patterns in the protein.  

 Despite the importance of protein-nucleic acid 
interactions and the need of predictive methods for protein 
sequence analysis, only a few studies have been reported for 
prediction of binding residues from amino acid sequence 
information. For DNA-binding residues, artificial neural 
networks were trained with sequence and residue solvent 
accessibility information, and the predictor achieved 40.3% 
sensitivity and 81.8% specificity [4]. Since the dataset was 
imbalanced with more negative data instances than positive 
ones, the prediction strength was measured by the average of 
sensitivity and specificity, which was 61.1% for the above 
predictor. Evolutionary information in terms of position-
specific scoring matrices (PSSMs) was found to enhance the 
prediction strength to 67.1% with 68.2% sensitivity and 
66.0% specificity [5]. In a related study, machine learning 
approaches were developed to predict RNA-binding proteins 
based on primary sequence information [6]. However, RNA-
binding residues were not predicted in that study. 

In the present study, support vector machines (SVMs) are 
used to predict RNA-binding residues from amino acid 
sequence information. SVM is a relatively new machine 
learning algorithm [7], and has recently been applied to a 
variety of biological problems for pattern classification [8]. 
In biological applications, support vector machines often 
outperform the other machine learning algorithms such as 
neural networks due to SVM’s superior generalization 
power and its ability to avoid overfitting. The SVM learning 
algorithm is particularly appealing for prediction of RNA-
binding residues. Since the sequence data space of RNA-
binding sites appears to be very large but the observations of 
protein-RNA interactions based on structural data are scarce, 
model overfitting is the major concern in this case. 

Prediction of RNA-Binding Residues in Protein Sequences 
Using Support Vector Machines  

Liangjiang Wang, Susan J. Brown 

K

Proceedings of the 28th IEEE
EMBS Annual International Conference
New York City, USA, Aug 30-Sept 3, 2006

SaEP3.9

1-4244-0033-3/06/$20.00 ©2006 IEEE. 5830



Furthermore, a new method has been developed to encode 
each residue with sequence-derived features. These features 
provide biological information, which may not be learned 
directly from the sequences data. Feature extraction also 
reduces the dimensionality of the sequence data, and thus 
may overcome the problem of the small training dataset.  
The results suggest that our approach is effective for 
accurate prediction of RNA-binding residues from amino 
acid sequence information. 

II. METHODS

A. Data Preprocessing 
Structural data of protein-RNA complexes were retrieved 

from the Protein Data Bank (http://www.rcsb.org/pdb/).  
Structures that had been determined by X-ray 
crystallography with resolution better than 3.5 Å were 
selected for this study. The structure dataset had 174 
protein-RNA complexes. 

The structures were then analyzed for identification of 
RNA-binding residues. An amino acid residue was 
designated as a binding site if the side chain or backbone 
atoms of the residue fell within a cutoff distance of 3.5 Å 
from any atoms of the RNA molecule in the complex. All 
the other residues were regarded as non-binding sites. The 
same criterion was used in the previous studies for 
identification of DNA-binding residues [4], [5]. A Perl 
program was developed to take a set of structure files as the 
input and create an output file of amino acid sequences with 
each residue labeled as a RNA-binding or non-binding site. 

To remove redundancy among the amino acid sequences, 
clustering analysis was performed using the blastclust
program (http://www.ncbi.nlm.nih.gov/BLAST/) with the 
sequence identity threshold set to 25%. From each cluster, 
the longest sequence was selected. The non-redundant 
dataset, named PRINR25, had 107 sequences with 3,239 
RNA-binding residues and 18,519 non-binding residues. 

B. Feature Extraction 
Five different sequence features (A, B, H, K and M) have 

been selected to encode an amino acid residue. The A feature 
is the relative solvent accessible surface area (ASA) of a 
residue, which was previously used for prediction of DNA-
binding residues [4]. In this study, relative ASA was 
predicted from sequence data using the PHDacc program 
(http://cubic.bioc.columbia.edu/pp/). 

The B feature indicates how well a sequence position is 
conserved in a BLAST search against a reference database.  
Let Hp = {h1, h2, …, hn} be the set of n hits (n > 0) in the 
BLAST search for a given protein sequence p. Each hit may 
include one or more pair-wise sequence alignments, in 
which the BLAST program indicates whether two aligned 
residues are identical or show similarity based on the 
BLOSUM62 scoring matrix [9]. The feature value for the 
residue ai at position i in p is computed as follows: 
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where f (ai, hj) is set to 1 if ai is aligned to an identical or 
similar residue in hj, or 0 otherwise, and c is a pseudo-count, 
which was set to 10 in this work. The term (c /n) is used to 
scale the feature value, and it becomes smaller (close to 0) 
when n gets larger. If p has no BLAST hit in the reference 
database (n = 0), the feature value is set to 0. The protein 
sequence dataset UniProtKB (http://www.pir.uniprot.org/)
was used as the reference database, and the E-value 
threshold for the BLAST search was set to 1e-5 in this 
study. 

The other three features represent biochemical properties 
of an amino acid. The H feature is the hydrophobicity index 
of an amino acid [10]. Hydrophobicity is a key factor in 
amino acid side chain packing and protein folding. 
Hydrophobic amino acids are often located inside globular 
proteins but rarely found at protein-RNA interfaces. The K
feature takes the amino acid side chain pKa value, which 
determines the ionization state of a residue in protein 
sequences. Since the phosphate groups of RNA are 
negatively charged, the ionization state of amino acid side 
chains may play an important role in protein-RNA 
interactions. In this study, the side chain pKa values from 
[11] were used. The K feature value was set to 7 for the 
amino acids without a side chain pKa value. The M feature is 
simply the molecular mass of an amino acid. Each amino 
acid has a unique value of mass, which is related to the 
volume of space that a residue occupies in structures. 

C. Training Strategies 
The training and test datasets contained residue-wise data 

instances extracted from the sequence dataset. Each instance 
was a subsequence of length w, where w was the sliding 
window size set to eleven in this study. Other window sizes 
were also tested, but the classifiers constructed with w = 11 
gave the best performance. From a protein sequence with n
residues, a total of (n – w + 1) data instances were extracted. 
The target residue was positioned in the middle of the 
subsequence, and the neighboring residues provided context 
information for the target residue. A data instance was 
labeled with 1 (positive) if the target residue was RNA-
binding or -1 (negative) if the target residue was non-
binding. When the data instances were extracted, each 
residue was replaced with one or more feature values. 

A fivefold cross-validation approach was used to train 
and test support vector machines as well as neural networks. 
The positive and negative instances were distributed 
randomly into five folds. Each fold contained the same 
number of positive as well as negative instances. In each of 
the five iterative steps, four of the five folds were used to 
build a classifier (training), and then the classifier was 
evaluated using the remaining one fold (testing). The 
predictions made for the test instances in all the five 
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iterations were combined and used to compute the results 
presented in this paper. 

D. Support Vector Machines 
The SVMlight package (http://svmlight.joachims.org/) 

was used to construct the support vector machine (SVM) 
classifiers. For a given set of binary-labeled training 
examples, SVM maps the input space into a higher-
dimensional feature space and seeks a hyperplane in the 
feature space to separate the positive data instances from the 
negative ones [7]. The optimal hyperplane maximizes the 
separation margin between the two classes of training data, 
and is defined by a small fraction of the input data instances 
close to the hyperplane (the so-called support vectors). The 
distance measurement between the data points in the high-
dimensional feature space is defined by the kernel function.  
In this study, we used the radial basis function (RBF) 
kernel, )||||exp(),( 2yxyxK , where x  and y  are two 
data vectors, and  is a training parameter. A smaller  value 
makes the decision boundary smoother. Another parameter 
is the regularization factor C, which controls the tradeoff 
between low training error and large margin [12]. Different 
values for the  and C parameters were tested to optimize the 
prediction of RNA-binding residues. Since the training 
dataset was imbalanced, the cost factor was set to 5.7 for 
giving more weight to training errors on positive examples 
than errors on negative ones. All the other parameters were 
set to their default values as specified in SVMlight.

E. Artificial Neural Networks 
Feed-forward neural networks with the back-propagation 

learning algorithm were implemented using the NevProp
package version 3 (http://brain.cs.unr.edu/publications/).
Each neural network had three layers of neural units or 
neurons, including an input layer, a hidden layer and an 
output layer. The input layer had k × w units, where k was 
the number of the features used to encode each residue, and 
w was the sequence window size. Various numbers of 
hidden units were tested to optimize the network settings. 
The output layer had a single neuron, which predicted 
whether a target residue was RNA-binding or not. The 
neural networks were fully connected, and the output and 
hidden neurons used the logistic sigmoid activation function. 

F. Classifier Performance Measures 
Predictions made for the test data instances are compared 

with the class labels (RNA-binding or non-binding) to 
evaluate classifier performance. The overall accuracy equals 

)()( FPFNTNTPTNTP , where TP is the number of 
true positives (RNA-binding residues with positive 
predictions); TN is the number of true negatives; FN is the 
number of false negatives; and FP is the number of false 
positives. However, the overall accuracy alone could be 
misleading in this case. Since the dataset is imbalanced, a 
classifier can achieve over 85% accuracy by simply 
predicting all the residues as negatives. Thus, sensitivity = 

)( FNTPTP  and specificity = )( FPTNTN  are 
computed. Furthermore, the average of sensitivity and 
specificity may provide a fair measure of prediction strength 
[4], [5]. 

The Receiver Operating Characteristic (ROC) curve is 
probably the most robust approach for classifier evaluation 
[13]. The ROC curve is drawn by plotting the true positive 
rate (i.e., sensitivity) against the false positive rate, which 
equals to (1 – specificity). The different points on the ROC 
curve represent the tradeoffs between sensitivity and 
specificity. When a classifier’s sensitivity increases, its 
specificity often drops. In this work, the ROC curve has 
been generated by using different threshold values for the 
output of a classifier and plotting the true positive rate 
against false positive rate for each threshold value. The area 
under the ROC curve (AUC) can be used as a reliable 
measure of classifier performance [14]. Since the ROC plot 
is a unit square, the maximum value of AUC is 1, which is 
achieved by a perfect classifier. Weak classifiers and 
random guessing have AUC values close to 0.5. 

III. RESULTS
As described in Methods, five different sequence features 

have been used to encode an amino acid residue in this 
study. Each data instance consists of eleven residues 
including the target residue in the middle and its five 
neighboring residues on each side. The prediction is made 
for the target residue, and the neighboring residues provide 
context information for the target residue. 

It is important to note that each feature captures certain 
information about a specific aspect of RNA-binding. For 
example, the B feature is an index to the conservation of a 
position in homologous sequences. It is likely that RNA-
binding sites as well as other functional positions tend to be 
conserved among homologous proteins. Although the B
feature does not appear to be sufficient to define a RNA-
binding residue, it captures some relevant information that is 
not present in the other features. Thus, combination of the 
different features may enhance the prediction accuracy. 

Table I shows the performance of the SVM classifiers in 
five-fold cross validations. The results have been obtained 
using the training parameters, C = 0.5 and  = 0.1, which 
gave slightly better performance than other values. The 
SVM classifier constructed using all the five features 
achieves 74.25% overall accuracy with 65.78% sensitivity 
and 75.70% specificity. The prediction strength (average of 
sensitivity and specificity) reaches 70.74%.  The ROC curve 
of the classifier is shown in Fig. 1 (the curve indicated as 
‘SVM’), and the area under the ROC curve (AUC) is 
0.7538.

To determine whether all the five sequence features are 
needed for accurate prediction of RNA-binding residues, 
different feature subsets have been used to train SVMs. It is 
found that removing any one or more of the five features 
reduces the prediction strength and ROC AUC (Table I and 
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data not shown). The best classifier using four features (B,
H, K, M) achieves the prediction strength at 70.57% and 
AUC = 0.7467. Removal of the A feature results in only a 
slight decrease of the prediction strength, suggesting that the 
A feature captures information mostly overlapping with the 
other sequence features. This may be explained by the fact 
that the feature A values have been predicted from sequence 
data (see Methods). The best single feature for prediction of 
RNA-binding residues appears to be H (hydrophobicity 
index), which gives rise to relatively high sensitivity 
(69.67%) but low specificity (57.24%). The result is 
consistent with the observation that hydrophobic amino 
acids are rarely found at protein-RNA interfaces [2], [3]. 

To compare the performance of SVMs versus artificial 
neural networks (ANNs) for prediction of RNA-binding 
residues, the same dataset that has been used for 
constructing the SVM models is also used to train and 
evaluate the ANN classifiers. Various numbers of hidden 
units have been tested to optimize the neural network 
settings. As shown in Table II, the ANN with eight hidden 
units achieves the highest prediction strength (67.79%) and 
AUC value (0.7444). In Fig. 1, the ROC curves of the best 
SVM and ANN classifiers are compared. Clearly, the SVM 
is the better classifier for RNA-binding residues. 

IV. CONCLUSION

We have described a new method for prediction of RNA-
binding residues in protein sequences. Five relevant features 
have been selected for input encoding, and the most accurate 
classifier has been obtained by training a support vector 
machine with all the five features. Our method appears to be 
better than the previous neural network-based approaches 
developed for prediction of DNA-binding residues [4], [5]. 
The results from this work have been used to develop the 
BindN web server (http://bioinformatics.ksu.edu/bindn/) for 
online prediction of nucleic acid-binding residues. 
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TABLE I
PERFORMANCE OF THE SUPPORT VECTOR MACHINE CLASSIFIERS

Features Accuracy 
(%)

Sensitivity
(%)

Specificity
(%)

Strength
(%)

ROC
AUC

A,B,H,K,M 74.25 65.78 75.70 70.74 0.7538 

B, H, K, M 73.70 66.24 74.89 70.57 0.7467 

H, K, M 69.32 66.28 69.84 68.06 0.7308 

H, K 67.64 66.01 67.92 66.96 0.7259 

H 59.05 69.67 57.24 63.46 0.6894 
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Fig. 1. ROC curves of the best support vector machine (SVM) 
and neural network (ANN) classifiers. 

TABLE II
PERFORMANCE OF THE NEURAL NETWORK CLASSIFIERS

# Hidden 
Units

Accuracy 
(%)

Sensitivity 
(%)

Specificity
(%)

Strength 
(%)

ROC
AUC

4 60.76 77.77 57.36 67.56 0.7418 

8 63.03 74.92 60.66 67.79 0.7444 

12 62.43 75.05 59.90 67.48 0.7353 

16 64.45 68.74 63.59 66.17 0.7206 
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