
 

Abstract—In this paper, we present a comprehensive neural 
network based modeling and validation framework for reverse 
engineering gene regulatory interactions. We employ two 
approaches, Gene Set Stochastic Sampling and Sensitivity 
Analysis, to infer these interactions.  We first apply these 
methods to a simulated artificial dataset to ensure their 
correctness and accuracy.  True biological interactions are then 
modeled by analyzing a rat hippocampus development dataset.  
Finally, we present a thorough computational methodology to 
test the validity and robustness of the inferred regulations 
through novel assemblies of relevant testing datasets.

I. INTRODUCTION

The control of transcription is an integrated mechanism 
involving regulatory interactions between genes [1, 2]. 
Genes that regulate one and other comprise a genetic 
network [3]. Given the relative expression levels (mRNA or 
protein levels) of a set of interacting genes at different time 
points, a model of the gene interactions can be developed 
through different reverse engineering techniques [4].   

In recent years, many reverse engineering techniques 
have been applied to this problem.  These include Boolean 
networks [5], mutual information based techniques [6, 7], 
Bayesian networks [8, 9], local invariant methods [10], 
additive models [11, 12], genetic algorithms [13], neural 
networks [14] and neural genetic hybrids [15, 16]. 

Additive models represent changes in the expression level 
of each gene at a given time point as a weighted sum of all 
of its regulatory inputs at previous time points [11].  It is 
known that genetic networks display complex non-linear 
network dynamics. Thus non-linear additive models are the 
most biologically plausible [17]. Artificial neural networks 
are powerful mathematical tools that can be used to learn 
complex non-linear functions, and can therefore be used to 
simulate non-linear additive models to model genetic 
regulatory networks. 

In the current study we present a comprehensive reverse 
engineering and computational-validation approach to 
modeling genetic networks as non-linear systems. We utilize 
two algorithms to identify genetic interactions from trained 
neural networks: Sensitivity Analysis (SA) [18], a heuristic 
search approach and Gene Set Stochastic Sampling (GSSS), 
a stochastic search approach. First we validate these methods 
on a simulated dataset. Following this, we apply these 
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methods to a biological dataset.   Finally, we present an 
extensive test strategy to evaluate the accuracy of the 
inferred interactions. 

II. METHODS

II.I Modeling gene interactions using neural networks: 

Neural network performance is assessed by the sum 
squared error (SSE) of the network predictions.  We employ 
feed-forward and Elman network architectures in our
modeling strategies. In the feed-forward network, input 
nodes are directly connected to one output node with a non-
linear transfer function (tan-sigmoid function). In contrast 
the Elman network contains a hidden node that is connected 
to itself through a context unit.  The recurrent layer in the 
Elman network allows it to make predictions based on all 
previously presented data. Both neural networks were 
trained employing Bayesian regularization which offers fast 
convergence and a high degree of generalization [19]. 

Gene Set Stochastic Sampling 
GSSS infers regulatory interactions by predicting target 

gene profiles with small input gene subsets. An exhaustive 
search will identify a gene subset that is the most predictive 
of the target gene expression profile (revealing its most 
likely regulators). Due to the computational infeasibility of 
an exhaustive search, GSSS performs stochastic samplings 
of genes and tests their ability to predict a target gene 
profile. An SSE threshold, τ, is dynamically assigned to 
select the 1000 most predictive subsets and the most likely 
regulators of the target gene are then identified based on 
their occurrence in these most predictive subsets.  For a 
more detailed description of the algorithm see [18]. 

Sensitivity Analysis 
SA infers regulatory interactions by systematically

perturbing the expression profile of each input gene and 
examining the resultant error in a trained network. A neural 
network is trained with the expression profiles of input genes
to predict a target gene profile. For each input gene a ‘jitter’ 
equal to +/- the standard deviation of its expression level 
divided by four is added to its profile.  Perturbed genes that 
cause the greatest increase in prediction error of a target 
profile can be inferred as its regulators.  The ‘jitter’ is 
random in nature, therefore each run of the algorithm can 
result in slightly different perturbed patterns for each gene.  
To design a robust methodology for regulator inference, SA 
is performed multiple times, each time taking advantage of a 
small difference in the perturbation scheme.  The genes with 
the highest occurrence in the resultant subsets are taken as 
the most likely regulators of the target.  For a more detailed 
description of the algorithm see [18]. 
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II.II Artificial and Biological Datasets: 

Artificial Dataset 
The artificial dataset used to validate our methods was 

produced by Smith et al. [20], employing the Bayesian 
network based BRAINSIM simulator. The simulated 
dataset consists of measurements of 100 genes taken from 4 
simulated tissue regions in 6 simulated patients.  The 
networks underlying the datasets between regions and 
patients have the same topology, but differ slightly in their 
weight magnitudes.  Only 10 of the simulated genes are 
associated with one and other through regulatory interactions 
while the remaining 90 genes serve as distracters and 
represent ‘noisy’ and irrelevant gene measurements.  The 
expression levels of two genes in the network are directly 
affected by an activity node representing a stimulated (on) 
biological system and non stimulated (off) biological 
system. These two genes, in turn, affect the expression levels 
of 8 downstream genes (Fig 1).  At each time point, the 
expression levels of genes in the network are governed by 
the expression levels of their regulators, a degradation factor 
and a noise factor.  Whereas, the expression levels of the 90 
other genes randomly fluctuate within the upper and lower 
expression level bounds.  

Due to the stochastic nature of the added noise in the 
system, when the model is run on separate instances the 
simulated output will differ slightly but will be governed by 
the same underlying genetic network interactions. We use 20 
datasets generated from 20 different BRAINSIM runs,
where each dataset is comprised of 20 time points, sampled 
at simulated 5 minute intervals. Twelve of these datasets are 
concatenated and used for training and the remaining 8 are 
concatenated and used for testing. For a more detailed 
description of BRAINSIM see [20].  

Hippocampus development dataset 
We apply our methods to the hippocampus development 

dataset developed in [21]. It is comprised of 70 genes whose 
expression levels are measured by real time polymerase 
chain reaction (RT-PCR) over 11 non-uniformly separated 
time points, namely 0.25h, 0.5h, 1.5h, 3h, 6h, 24h, 48h, 10d, 
21d, 32d, 49d (where h is hours and d is days). The dataset is 
low in experimental noise and accurate, therefore favorable 
for testing modeling strategies [22]. In addition, several 
other studies have previously explored this dataset making a 
comparative analysis available [10, 15, 16, 22]. 

 To obtain sufficient training and testing data points, 
piecewise cubic Hermite Spline interpolation is employed to 
approximate measurements at hour intervals between the 
measured time points. This technique fits a polynomial of 
third degree between every two consecutive time points.  
Hermite Spline interpolation is the preferred method, as 
Hermite curves do not oscillate when the underlying 
function is not smooth and are able to fit the data without 
under/over shooting between the basis points [23]. 

A. II.III Validation of acquired gene regulatory networks: 

Training and Test data 
The lack of replicates in the hippocampus development 

dataset requires that dataset partitioning schemes be 
developed to separate training and testing data. In the first 
method, the dataset is separated into training and test sets by 
selecting measurements from alternating time points. 
Training time points are selected at t=1h, t=3h t=5 h… and 
testing time points are selected at t=2h, t=4h and t=6h...  

In a second testing method, a ‘noisy’ dataset similar to the 
original data is derived by adding Gaussian noise to each 
profile, with a mean of zero and a standard deviation 
proportional to the fluctuation of the corresponding profile. 
The change in SSE of a robust network when simulated on a 
‘noisy’ input dataset should be insignificant. 
     The interpolation process increases the similarity between 
neighboring data points. To ensure that time-closeness 
between interpolated training and test samples does not 
cause favorable testing results, a partitioned separation 
scheme is devised.  In this technique, training data is 
constructed using only the first 60% of the available time 
points and the testing data is comprised of the second 40%. 

Reverse Prediction 
Causal relationships are time dependent, thus neural 

networks predicting based on causality should be able to 
predict target profiles at time t only when given the input 
gene profiles at time tt Δ− .  In contrast, if a neural network 
predicts based on correlations between its inputs and outputs 
it should predict expression levels at time t given the 
expression levels of the input genes at time tt Δ− or 

time tt Δ+ . To ensure that only causal relationships are 
being inferred, we implement reverse prediction. 

In one reverse prediction scheme, SA is applied to a 
reversed gene expression dataset where the original final 
time point measurement becomes the initial time point and 
the order of the data points is reversed. If analysis on a 
reversed dataset results in overlapping regulators with the 
regular dataset, correlation based predictions are likely.  In a 
second method, neural networks trained and tested with 
regulators inferred on an original dataset, are tested on 
corresponding reversed time point data to compare SSEs.  In 
a more stringent analysis, the inferred regulators that are 
most correlated with the target genes are removed from the 
input space and resultant testing SSEs on the normal and 
reversed dataset are compared. 

Fig 1:  The network topology and connection signs of the genetic 
regulatory interactions simulated in the artificial dataset. The 
highlighted connections were identified by both GSSS and SA. 
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Fig 3:  SSEs for network 
predictions of G67186. Testing 
SSE (blue) reverse testing SSE 
(Red) testing SSE with correlated 
genes removed (green) reverse 
testing with correlated genes 
removed (aqua).

Fig 2:  The training and testing 
output of an Elman network for 
preGAD67 using only the regulators 
that were inferred through GSSS as it 
was applied to the partitioned dataset 
(SSE = 0.02) 

III. RESULTS

III.I Results – Artificial dataset 

GSSS and SA were applied to each ‘network’ gene in the 
artificial dataset. GSSS and SA were able to successfully 
infer 8 of the 9 regulatory interactions as shown in Fig 1.  In 
all cases our analysis was unable to identify gene 3 as a co-
regulator of gene 6.  

III.II Results - Hippocampus development dataset  

Gene Set Stochastic Sampling 
For each target gene, GSSS was performed, sampling 

20,000 gene sets of size 7, using both Elman and feed-
forward network architectures. The maximum permissible τ
was set to 0.09, as higher SSEs resulted in insufficient 
prediction accuracies.  Genes that had a percent occurrence 
greater than 0.75 in the predictive gene sets were inferred as 
regulating genes (see Table I). Finally the network was 
retrained with the most probable regulating genes and 
corresponding training and testing errors were recorded. 

For preGAD67, inferred regulators were trained and 
tested using all training/testing data separation techniques 
discussed in II.III. The SSEs on all test sets were below 0.07 
for the feed-forward networks and below 0.02 for the Elman 
network architecture (Fig 2).  Similar results were seen when 
the same analysis was applied to G67186. 

Sensitivity Analysis 
SA was applied 100 times to identify regulators for each 

gene in the dataset. The algorithm was terminated when the 
number of remaining probable regulators of the target gene 
reached 10. The reported regulating genes had a probability 
occurrence of at least 0.75 in the 100 runs (Table II). For 
preGAD67, inferred regulators were trained and tested using 
all training/testing data separation techniques discussed in 
II.III. The SSE on the test sets were below 0.06 for the feed-
forward networks and below 0.02 for the Elman network 
architecture. 

III.III Results: Reverse Prediction 

SA was applied to the reversed time dataset to infer the 
probable regulating genes of the target gene G67186. The 
results had only one gene in common with the predicted 
regulatory set from analysis on the original dataset.  
     In a second experiment the inferred regulators of 
G67186, via SA, were used to train a feed-forward neural 
network to predict the expression profile of G67186 1h, 2h, 
4h, 6h, 10h, and 24h and 48h ahead of time.  These networks 
were then simulated on the reversed time point dataset 
resulting in a prediction SSE of at least 5 orders of 
magnitude larger than the training SSE (Fig 8). Finally, the 
three regulatory genes most correlated with G67186 
(mAChR1, PDGFb, IP3R3) were removed form the input 
space and simulations were performed with the original and 
reversed datasets.  Simulation SSEs for the original data 
remained low.  However, simulation SSEs increased 
dramatically on the reversed dataset, inferring that 
predictions are not being made based on correlated 
expression profiles, but on causal relationships (Fig 3). 

Table II:  Inferred regulators of preGAD67 and G67186 as resulting from 
Sensitivity Analysis. 

Network Architecture Regulating Genes 
of PreGAD67 

Regulating 
Genes of 
G67186 

GRa4 TH 

5HT2 GRa2 
Unique Regulators 

Inferred by the Elman 
Network - H4 

Nestin CyclinA 

GRg1 mACHR1 
Unique Regulators 

Inferred by the Feed-
Forward Network - mACHR2 

InsR InsR 

IGFR2 IGFR2 
IGF2 IGF2 

mACHR1 PDGFb 
CyclinB NFH 

NFL IP3R3 
nmACHRa7 nACHRa7 

Intersection of 
Regulators Inferred by 
the Elman Network and 
Feed-Forward Network 

Brm - 

Table I:  Inferred regulators of preGAD67 and G67186 resulting from 
Gene Set Stochastic Sampling.  

Network Architecture Regulating Genes of 
PreGAD67 

Regulating 
Genes of 
G67186 

TCP TH 

IGFR1 NFH 

GAD67 - 

Unique Regulators 
Inferred by the Elman 

Network 
mGluR3 - 

- 5HT2 Unique Regulators 
Inferred by the Feed-

Forward Network - IGFR1 

COCO2 COCO1 

IGF2 Cyclin A 

mAChRa3 IGF2 

TH mACHR1 

Intersection of Regulators 
Inferred by the Elman 

Network and Feed-
Forward Network 

preGAD67 preGAD67 
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IV. DISCUSSION

GSSS and SA were validated on their ability to capture 
known interactions in the artificial dataset, as they captured 
eight of the nine interactions represented in the dataset. 
When this dataset was analyzed previously in [20], the 
Bayesian network based NETWORKINFERENCE 
algorithm was also unable to predict the co-regulation of 
gene 6 by gene 3. Gene 5 and gene 3 both regulate gene 6 in 
a coordinated fashion with the minimum expression level of 
the pair serving as the regulation limiting factor. By 
examining the expression data across temporal samples, it 
was observed that gene 5 had a lower expression level than 
gene 3 in ~89 % of the time points, thus, gene 5 served as 
the effective regulator of gene 6 [20]. This confirms the 
reliability of viability of GSSS and SA.  

When GSSS and SA were performed on the rat 
hippocampus development dataset, it became apparent that 
the two network architectures (feed-forward and Elman) 
produced overlapping results in their inferred regulatory 
genes for each target gene (Table I and Table II), indicating 
robustness to the choice of network architecture. 

The two developed modeling approaches (GSSS and SA) 
also produced overlapping results when applied to infer 
regulating genes of a common target gene as three of the ten 
predicted regulators of G67186 were shared between the two 
methods (Table I and Table II).  

The accuracy and robustness of the inferred regulatory 
interactions were confirmed through testing trained networks 
with ‘noisy’ input data, as well as alternate testing and 
partitioned testing data.  SSEs on the testing datasets had a 
maximum of 0.07 and a minimum of 0.02 which result in 
expression profile predictions that very closely follow the 
target profiles (Fig 2). 

Causal relationships between target genes and their 
inferred regulators were verified through reverse prediction 
analysis.  Inferred regulators were unable to accurately 
predict the expression profiles of their target genes in a 
reversed time point manner.  The causality of the inferred 
relationships was verified further, when we eliminated the 
inferred regulators that were most correlated with a target 
gene and observed that the SSEs for prediction with the 
original data remained low, while the SSEs on the reverse 
time point testing set increased in magnitude (Fig 3). 

In conclusion, two approaches involving neural networks 
aimed at inferring genetic regulatory networks were 
validated on an artificial dataset.  Both methods were able to 
detect all but one of the artificial genetic interactions 
represented in the artificial dataset, verifying their validity. 
The methods were then applied to the rat hippocampus 
dataset [21]. The modeling approaches were shown to be 
robust to the architecture of the neural networks employed.  
The resultant networks were then tested and verified, by 
employing a thorough computational methodology to 
determine the validity and robustness of the inferred 
regulations through novel assemblies of relevant testing 
datasets. 
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