
Abstract— We present a novel algorithm combining artificial 
neural networks and swarm intelligence (SI) methods to infer 
network interactions. The algorithm uses ant colony 
optimization (ACO) to identify the optimal architecture of a 
recurrent neural network (RNN), while the weights of the RNN 
are optimized using particle swarm optimization (PSO). Our 
goal is to construct an RNN that mimics the true structure of 
an unknown network and the time-series data that the network 
generated. We applied the proposed hybrid SI-RNN algorithm 
to infer a simulated genetic network. The results indicate that 
the algorithm has a promising potential to infer complex 
interactions such as gene regulatory networks from time-series 
gene expression data. 

I. INTRODUCTION 
ecent advances in bio-technologies for high throughput 
data acquisition have generated challenges in the 

discovery of network interactions in biological systems. The 
challenges provide computer scientists, statisticians, and 
engineers with opportunities to expand their knowledge of 
intelligent methods to provide models for better 
understanding of biological systems. The field of system 
modeling plays a significant role in the discovery of network 
interactions. Several system modeling approaches have been 
proposed to reverse-engineer network interactions including 
a variety of continuous or discrete, static or dynamic, 
quantitative or qualitative methods [1-6].  

The use of computational intelligence methods for system 
modeling has gained particular interest, because it requires 
little a priori knowledge about the underlying system and the 
model can be derived from data. Artificial neural networks 
(ANNs) have been one of the approaches for nonlinear and 
dynamic system modeling problems. In [7], ANNs are 
developed for solving the inverse metabolic problem. A 
neural model is used to simulate the dynamics of the lambda 
phage regulatory system [8]. Genetic algorithms (GAs) have 
also been applied to decipher genetic networks from gene 
expression data [9-11]. Shin and Iba [11] developed an 
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inference algorithm based on GAs for the optimization of the 
influence matrix of gene regulatory network. In [13], GAs 
and ANNs are combined to determine gene interactions in 
temporal gene expression data. 

In this paper, we propose to apply a hybrid of ANNs and 
swarm intelligence (SI) methods [12] to infer network 
interactions from time-series data. The architecture and the 
synaptic weights of a recurrent neural network (RNN) are 
optimized using ant colony optimization (ACO) and particle 
swarm optimization (PSO) methods, respectively. Unlike 
previous computational methods, which targeted at one-step-
ahead prediction of time-series data [13], our method 
enables a multi-step-ahead prediction. This is achieved 
through our RNN, which is self-evolutionary. The RNN 
starts with a given initial condition, evolves, and eventually 
reaches final states. The proposed hybrid SI-RNN algorithm 
selects the architecture of the RNN and weights not only to 
mimic the response of the unknown network at each time 
point but also to identify the structure of the network that 
generated the time-series data. This is a challenging task 
given that there may be many possible structures with 
responses that closely match the generated data. The 
algorithm evaluates various structures through the cross-
validation method to avoid the selection of a wrong structure 
and to make sure that the correct structure is identified 
despite the presence of noise and complexity of the unknown 
network. We successfully applied the algorithm to infer 
simulated network interactions. 

II. INFERRING NETWORK INTERACTION USING SI-RNN 
In building RNNs for inferring networks, the 

identification of the correct structure and determination of 
the free parameters (weights and biases) to mimic the real 
data is a challenging task given the limited available quantity 
of data. For example, in inferring a gene regulatory network 
from microarray data, the number of time points is 
considerably low compared to the number of genes involved. 
Considering the complexity of the biological system, it is 
difficult to adequately describe the pathways involving a 
large number of genes with few time points. In this paper, 
we apply ACO and PSO methods to select the architecture 
of an RNN and to update its free parameters, respectively.  

A. Recurrent Neural Network 
Fig. 1(a) shows an RNN, where the output of each neuron 

is fed back to its input after a unit delay and is connected to 
other neurons. It can be used as a model of gene regulatory 
network, where every gene in the network is considered as a 
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neuron; RNN model considers not only the interactions 
between genes but also gene self-regulation.  

(a)                                                          (b)  
Fig. 1. (a) Architecture of a fully connected RNN; (b) Details of a single 
recurrent neuron. 

Fig. 1(b) illustrates the details of the ith self-feedback 
neuron (e.g. ith gene in the GRN), where vi, known as the 
induced local field (activation level), is the sum of the 
weighted inputs (the regulation of other genes) to the neuron 
(ith gene); and ϕ(.) represents an activation function 
(integrated regulation of the whole RNN on ith gene), which 
transforms the activation level of a neuron into an output 
signal (regulation result). The induced local field and the 
output of the neuron, respectively, are given by: 
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where the synaptic weights wi1, wi2,…, wiN define the 

strength of connection between the ith neuron (e.g. ith gene) 
and its inputs (e.g. expression level of genes). Such synaptic 
weights exist between all pairs of neurons in the network. bi

denotes the bias for the ith neuron. We denote s
�

as a 
structure vector that describes the architecture of the 
network, and w

�

 as a weight vector that consists of all the 
synaptic weights and biases in the network. s

�

 and w
�

 are 
adapted during learning to yield the desired network outputs. 
The activation function  introduces nonlinearity to the 
model. When information about the complexity of the 
underlying system is available, a suitable activation function 
can be chosen (e.g. linear, logistic, sigmoid, threshold, 
hyperbolic tangent sigmoid or Gaussian function.) If no prior 
information is available, our algorithm uses the hyperbolic 
tangent sigmoid function.  

As a cost function, we use the sum-squared error between 
the expected output and the network output across time 
(from the initial time point t0 to the final time point tf) and 
across neurons in the network. The cost function can be 
written as: 
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where xi(t) and )(ˆ txi are the true and predicted values 
(expression levels) for the ith neuron (gene) at time t. The 
goal is to determine the structure vector s

�

and weight vector 

w
�

 that minimize this cost function. We propose ACO and 
PSO to optimize s

�

and w
�

, respectively. 

B. Ant Colony Optimization 
Ant colony optimization studies artificial systems that 

take inspiration from the behavior of real ant colonies. The 
basic idea of ACO is that a large number of simple artificial 
agents are able to build good solutions to solve hard 
combinatorial optimization problems via low-level based 
communications. 

We propose to use ACO to optimize the structure 
vector s

�

. Each possible network structure s
�

 is defined by a 
combination of n features ][ 21 nssss �

� = , where sj is an n-
bit binary string that indicates which neurons are controlled 
by neuron j. Each sj is selected from 2n candidate features. 
For each neuron j, we define the function in Eq. (4) to 
determine the probability of selecting a feature i among the 
2n candidate features:  
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where )(kj
iτ is the amount of pheromone trail for the ith 

feature at iteration k. At k=0, )(kj
iτ is set to a constant for all 

features, allowing each feature to have equal probability of 
being selected. Thus, in the first iteration, each ant chooses 
randomly n features that make up a structure ( s

�

, a trail). Let 
s
�

 be an ant consisting of n features ][ 21 nssss �

�

= .
Depending on the performance of s

�

, the amount of 
pheromone trail of all features in s

�

will be updated. The 
performance function here is evaluated on the basis of 
mimicking the response of the system under study. To 
estimate the performance of s

�

, we construct an RNN that 
has the structure defined in s

�

. Then, we optimize the 
weights of the RNN using PSO. The response of the 
resulting RNN will be compared with the 
measured/observed response of the system under study.  The 
amount of pheromone trail for each element in s

�

 is updated 
in proportion to the performance of the structure. Assuming, 
the ith feature for the jth neuron was in s

�

, the corresponding 
amount of pheromone trail will be updated as follows: 

)()(.)1( kkk i
j

i
j

i ττρτ Δ+=+  (5) 
where ρ is a constant between 0 and 1, representing the 

evaporation of pheromone trails. Δτi(k) is an amount 
proportional to the performance by s

�

. Δτi(k) is set to zero, if 
si∉ s

�

. This update is made for all N ants ( 1s
�

,…, Ns
�

). Note 
that at k=0, Δτi(k) is set zero for all features. The updating 
rule allows trails that yield good performance to have their 
amount of pheromone trail increased, while others will 
evaporate. As the algorithm progresses, features with large 
amounts of pheromone trails influence the probability 
function to lead the ants towards them. 

(4)
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C. Particle Swarm Optimization 
 In the PSO algorithm, each particle is represented as a 

vector iw
�  and instantaneous trajectory vector )(kwi

�

Δ ,
describing its direction of motion in the search space at 
iteration k. The index i refers to the ith particle. The core of 
the PSO algorithm is the position update rule (6) which 
governs the movement of each of the n particles through the 
search space. 
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At any instant, each particle is aware of its individual best 
position, )(, kw besti

� , as well as the best position of the entire 
swarm, )(, kw bestG

�  . The parameters c1 and c2 are constants 
that weight particle movement in the direction of the 
individual best positions and global best positions, 
respectively; and r1,j and r2,j, Dj l,2,1=  are random scalars 
distributed uniformly between 0 and 1, providing the main 
stochastic component of the PSO algorithm.  

The constriction factor, χ , may also help to ensure 
convergence of the PSO algorithm, and is set according to 
the weights c1 and c2 as in (7). 
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The key strength of the PSO algorithm is the interaction 
among particles. The second term in (6), 

))()(( ,2 kwkw ibestG
�� −Φ , is considered to be a “social influence” 

term. While this term tends to pull the particle towards the 
globally best solution, the first term, ))()(( ,1 kwkw ibesti

��

−Φ ,
allows each particle to think for itself. The net combination 
is an algorithm with excellent trade-off between total swarm 
convergence, and each particle’s capability for global 
exploration. Moreover, the relative contribution of the two 
terms is weighted stochastically.  

The algorithm consists of repeated application of the 
velocity and position update rules presented above. 
Termination can occur by specification of a minimum error 
criterion, maximum number of iterations, or alternately 
when the position change of each particle is sufficiently 
small as to assume that each particle has converged.  

Selection of appropriate values for the free parameters of 
PSO plays an important role in the algorithm’s performance. 
In our study, parameters c1 and c2 were arbitrarily selected 
(c1 = 2.05, c2 = 2.05), with constriction factor, , determined 
by (7) and the maximum velocity was set at 2. 

D. SI-RNN 
In this section, we illustrate how two SI methods, ACO 

and PSO, work together to optimize both s
�

and w
�

 of an 

RNN to mimic a network of interactions. Each node in the 
true network will be represented by a neuron in the RNN. 
We assume that the number of nodes in the network is 
known (e.g. the number of genes for which a gene regulatory 
network is to be modeled is known), but the way the nodes 
interact is assumed to be unknown.  

ACO starts with initial candidate ants that define various 
structures. For example, let Fig. 2a be the structure for the 
true interaction that has three nodes and Fig. 2b be one of the 
randomly selected initial structures by ACO. For each of 
these two systems, the corresponding structure vector s

�

 is 
shown in the figure, where sj(j = 1, 2, 3) is a three-bit binary 
string that indicates which neurons (including itself) are 
controlled by the jth neuron. For example, if s1 = [0 1 1], it 
implies that the first neuron “controls” all others except itself 
and s2 = [0 0 1] implies that the second neuron controls the 
third neuron only.    

PSO searches for the optimal weight vector w
�

 to 
minimize the difference between the output of the true 
network and the RNN using the training data. Only the 
elements of w

�

that correspond to nonzero entries in s
�

 are 
updated by PSO. For example, the weight vector w

�

 in Fig. 
2b only contains two variables: 0.25 and 0.4, corresponding 
to the two nonzero entries in the structure vector s

�

.

The optimal weight vectors for all randomly selected 
structures (ants) will be evaluated with previously unseen 
validation dataset. The validation dataset may be generated 
at different initial conditions or by perturbing the parameters 
of the true network. The performance of each particle in 
simulating the validation dataset will be returned to ACO to 
update the trails of the ants in the search space (i.e., update 
the structure vector s

� ). The new sj’s in s
�

 will be used to 
construct a new candidate structure. This will lead to a 
structure that is more similar to the global best structure than 
the previous one. The assumption in this algorithm is that the 
prediction error of an arbitrary network will be larger than a 
network that matches the correct structure. Through 
subsequent iterations, the ACO and PSO search for the 
optimal structure vector s

�

and weight vector w
�

 to make 
accurate predictions. 

III. SIMULATED DATA AND RESULTS

We used the SI-RNN algorithm to identify the network in 
Fig. 3. Three datasets of 20 time points were generated from 
the network with different initial conditions: training, 
validation, and testing datasets. An RNN of five neurons 
with hyperbolic tangent sigmoid activation function was 

(7)

(6)

Fig. 2. True network (a); randomly selected network (b). 
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considered. PSO used the training dataset to determine the 
optimal weight vector w

�

 for each structure vector s
�

defined by ACO. The performance of each structure in 
predicting the outputs of the network in the validation 
dataset is used by ACO to determine the optimal structure. 
The algorithm was run 100 times. In each run, Eq. 3 was 
evaluated 1000 times to identify the structure that leads to 
the least cost. 54 runs (out of 100) predicted a RNN with 
identical structure to Fig. 3. Figure 4 shows the outputs of 
the true network and the predicted RNN for the testing 
dataset. 16% of the runs also predicted the true network 
structure, but they had two or three additional connections. 
The remaining 30% consisted of arbitrary structures. 

Fig. 3. A simulated five-node network. 

Fig. 4. Original and predicted outputs of the testing set. 

IV. CONCLUSION

In this paper, we explored the combined advantages of the 
nonlinear and dynamic properties of RNN, and the global 
search capabilities of swarm intelligence methods to infer 
network interactions. The algorithm is tested in a dataset 
generated from a simulated network yielded promising 
results. Limitations of the proposed algorithm include: (i) 
while for linear systems the predicted parameters can be 
compared with the original parameters by using linear 
activation functions, for nonlinear problems the predicted 
parameters cannot be directly compared; and (ii) because of 
the stochastic properties of the algorithms, not all runs 
identify the correct network structure. Our future work will 
focus on improving the rate at which the correct structure is 
identified. Our ultimate goal is to apply the algorithm to 
infer gene regulatory networks from real time-series gene 
expression data. Since the real gene expression data contains 
noise, limited time points and unequal time intervals, we 
anticipate challenges in applying the proposed method for 
real data. To partially address these challenges, we plan to 
incorporate known biological information into the algorithm. 
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