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Abstract—We propose a new computational approach for
protein docking exploiting energy funnels in the 6-dimensional
space of translations and rotations of the ligand with respect to
the receptor. Our approach consists of a series of translational
and orientational moves of the ligand towards the receptor.
Each move is performed using a global optimization method
we have developed – the Semi-Definite Underestimation (SDU)
method – which can exploit a funnel-like energy function. We
compared our approach with Monte Carlo on a set of 10 protein
complexes using two residue-level potentials. To achieve the
same level of performance (produce a near-native ≤ 3Å RMSD
complex) our approach reduces energy evaluations by more
than a factor of two, on average.
Index Terms—Computational biology, Global optimization,

Semi-definite programming, Molecular docking.

I. INTRODUCTION

THE genome-wide proteomics study fosters the need for

understanding protein–protein interactions. Although

X-ray crystallography has determined the structure of many

protein complexes, the number of such complexes is low

compared to the total number of structures in the Protein

Data Bank (PDB). Consequently, determining the atomic

coordinates of the complex computationally – a problem

known as protein docking – is critical. In protein docking,
one starts from the structures of the component proteins –

the receptor and the ligand – which are assumed known.
Given the fact that the native complex adopts the lowest
Gibbs energy, the problem can be cast as global optimization

of the binding free energy. According to recent CAPRI
protein-protein docking experiment results, 1 all successful
methods are based on a multistage approach. Such an ap-

proach starts with a systematic coarse grain search, where

Fast Fourier Transform (FFT) correlation techniques [1])

are widely used. Then promising conformational subsets are

further explored by more intelligent optimization algorithms

in higher resolution. Such “refinement”-stage algorithms

include Monte Carlo minimization with simultaneous rigid

body and side-chain optimization [2], and pseudo-Brownian
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rigid body docking followed by Biased Probability Monte

Carlo minimization of the ligand interacting side chains [3].

As in protein folding, the protein binding energy landscape

is believed to contain extremely rugged funnels [4]. This

concept is more or less computationally validated in the

one-dimensional dissimilarity space of RMSD (Root Mean

Square Distance). Further, it has a physical explanation. Gen-

erally, the energy includes forces that act in different space-

scales, resulting in multi-frequency behavior, and leading to

a huge number of local minima caused by high-frequency

terms (such as van der Waals). This suggests that even in

a relatively small region, a local search algorithm can be

of low efficiency and trapped easily in kinetic moves [5].

But at local minima where the solute-solute and solute-

solvent interfaces are equally well packed without overlaps,

the intermolecular van der Waals interactions in the bound

state are largely balanced by solute-solvent interactions in the

free state. Therefore, at such local minima the free energy

surface is essentially determined by the “smooth” free energy

component, which exhibits a funnel-like shape [4]. However,

the funnel-like shape has not been sufficiently explored in

the higher-dimensional conformational space. This is exactly

what our work sets out to achieve.

In this paper we present a stochastic global optimization

algorithm for protein docking. It explores the energy funnels

in the space of rigid motion and leads a rigid motion pathway

toward the global minimum by exploiting such funnels.

II. MATERIALS AND METHODS

A. Reduced Potentials

To better understand the structure of funnels in the orien-

tational subspace, and remove complicating factors present

in the full version of the problem, we will work with two

models. These models are Gō-type models [6] and have been

extensively used for understanding protein folding. They

classify all possible contacts as “native” (i.e., present in

the native structure) or “non-native”. A set of potentials are

developed so that native contacts are favorable while non-

native are not. The major advantage of such reduced models

is that they yield a smoother energy landscape.

In the simplified system, both proteins (receptor and

ligand) are represented at residue level. The center of a

residue is chosen as the position of the Cβ atom except

for Glycine where we use the Cα atom since its side-

chain consists of only a hydrogen atom. The receptor is

held fixed and the ligand is freely moving as a rigid body.

Then, the conformation of the ligand, or more specifically,

the positions of the ligand’s residues become a function of

conformational variables which we denote by the vector x.
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Let R = {ri; i = 1, · · · , I} denote the set of positions
for the receptor residues where ri is the center of receptor

residue i and L = {rj(x); j = 1, · · · , J} denote the set
of positions for the ligand residues where similarly rj(x)
is the center of ligand residue j. Let x∗ correspond to the

native complex and define as “native contacts” all pairs (i, j)
where i corresponds to the ith receptor residue, j corresponds

to the jth ligand residue, and dl ≤ ||ri − rj(x
∗)|| ≤ du

for some appropriate distances dl, du (e.g., dl = 3.8 Å
and du = 6.5 Å). Namely, we call “native” all contacts
where the corresponding residues are close enough in the

native complex. Denote by N the set of all these native

contacts (i, j) and set dij(x) = ||ri−rj(x)||, where dij(x
∗)

will denote distances in the native complex. Measuring all

distances in Å, we consider the following two potentials:

Reduced Potential 1: F1(x) =
∑

(i,j)∈N
(dij(x) −

dij(x
∗))2−100. Essentially, there are a number of “springs”

connecting the residues of the receptor and the ligand at

the interface. These springs have different equilibrium length

dij(x
∗) but the stretch force constants are not differentiated.

For physical feasibility we also use the penalty term of

space exclusions: 10
∑

i,j 1{dij(x) < dl}, where 1{·} is
an indicator function equal to 1 only if the corresponding
condition is satisfied and 0 otherwise. This term is defined
for every reduced potential and would not be repeated in

the next potentials. Notice that the potential is expected to

exhibit relatively smooth funnel-like shape but not trivially

quadratic in x since dij(x) is nonlinear in x.

Reduced Potential 2: We maintain the penalty for space
clashes but replace the native interactions by the term

F2(x) = 10
∑

(i,j)∈N
Eij1{dl ≤ dij(x) ≤ du} +∑

(i,j)∈N
(dij(x) − du)1{dij(x) > du}. Namely, we con-

sider a strong attraction force for native contacts in the

range (dl, du) and a linear force for longer range contacts.
The native interactions are weighted with the Miyazawa-

Jernigan residue-residue contact energies [7], denoted by Eij

for residue pair (i, j).
The purpose of local minimization for these reduced

potentials is to remove space clashes at the residue level.

This is simply achieved by incrementally pulling the ligand

away from the receptor along the line segment connecting

the two centers of mass, until the penalty term becomes zero.

The incremental stepsize we used was 0.2 Å.

B. The SDU Method

We have developed a stochastic optimization method

called Semi-Definite Underestimator (SDU) algorithm for
funnel-like shaped scoring functions. The method has simi-

larities with the CGU method [5], applied in protein folding,

which uses canonical quadratic underestimation to approx-

imate the energy function. However, the rather restricted

choice of the underestimator results in problematic per-

formance for challenging protein docking problems. We

follow a similar strategy and work on the envelope surface

spanned by the set of local minima. This surface inherits the

smooth behavior of the low-frequency energy terms. More

specifically, we generate a moderate number of local minima

and construct a general convex quadratic function that forms
the tightest underestimator of all of them. This quadratic

function suggests the location of the energy minimum. We

use this information to iteratively refine our search.

Constructing an underestimator: Let us denote by f :
R

n → R the free energy function we seek to minimize

and assume we have obtained a set of K local minima

φ1, . . . ,φK of f(·). We are interested in constructing a
convex quadratic function U(φ) satisfying U(φi) ≤ f(φi),
for all i = 1, . . . , K, that is, a function that underestimates

f(·) at all local minima φi, i = 1, . . . , K. More specifically,

U(φ)
�
= φ′

Qφ + b′φ + c, where Q ∈ R
n×n is a positive

semi-definite matrix, b ∈ R
n, and c is a scalar. The positive

semi-definiteness of Q guarantees the convexity of U(·).
In [8] we showed that the problem of finding the tightest

possible such underestimator U(·) can be formulated as
a Semi-Definite Programming (SDP) problem. These are
nonlinear problems that possess special structure and can be

solved efficiently using interior-point methods (in polynomial

time in the size of the input).

f ( x ) 

U ( x ) 

U
max

g ( x ) (scaled) 

Fig. 1. SDU forms the convex quadratic underestimator U(x) of a funnel-
like function f(x) and focuses its exploration in the vicinity of U(x)’s
minimum (using a sampling pdf proportional to −U(x)). Underestimation
and focused exploration is repeated iteratively until convergence.

Biased sampling: Suppose we are seeking the global mini-
mum of f(·) in some region B and have obtained an under-

estimator U(·) as described above. Depending on the samples
we used, and assuming that the constructed underestimator

reflects the general structure of f(·), the minimum of U(·),
say φP , is in the vicinity of the global minimum of f(·).
We will be referring to φP as the predictive conformation.
Our sampling method generates points so that the ones close

to φP are more likely to be selected while points with high

enough energies are assigned small probabilities (see [8]).

The SDU algorithm (outline) [8]: SDU seeks a global
minimum of f(·) in a region B and maintains a set L of

interesting local minima obtained so far as well as the best

such local minimum denoted by φ
G. It goes through a series

of iterations, each consisting of an exploration step and an
underestimation step. The exploration step generates points
in the current search region using the sampling approach

described above. Using each such sample as a starting point

we perform local minimization of f(·) and update L to

include these new local minima while discarding unfavorable

local minima. Solving the SDP problem described earlier

we derive a new underestimator that underestimates f(·) at
all points in L , which is then used to drive exploration

in the next iteration. In [8] we have established that SDU
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probabilistically converges (i.e., with probability converging

to 1) to the global minimum of f(·) when applied to a
general class of funnel-shaped functions as the number of

local minima used for underestimating f(·) grows.

C. Search Space and Our Strategy

For protein docking, we optimize the free energy over the

6-dimensional (6D) space, denoted by SE(3), of translations
and rotations of the ligand with respect to the receptor.

SE(3) is the semidirect product of two distinctive subspaces:
R

3 (translations) and SO(3) (the rotation group). R
3 is a

Euclidean space without any curvatures. As to SO(3), Euler
first showed that SO(3) is a 3-dimensional manifold and at
least 5 parameters are required to represent it in an 1 − 1
global manner. One can also view optimization in SO(3) as
taking place in the vector space of 3×3 rotation matrices R
where R′R = I and det(R) = 1, where I is the identity

matrix and det(·) denotes the determinant. Various other
parametrizations of SO(3) are available, e.g., Euler angles,
exponential coordinates, quaternions (see [9]).

The translational space R
3 is Euclidean so applying SDU

is more straightforward. We tested on unbound ligands for all

complexes in the benchmark set of [10]. For each complex,

we considered the bound orientation and pulled the ligand 7Å

away along the line segment connecting the two centers of

mass. We performed translational optimization while keeping

the ligand’s orientation fixed to the native one. Out of the

48 protein complexes in the benchmark set, SDU finds 19

predictions with < 1Å RMSD and 40 with < 3Å RMSD.

SO(3), on the other hand, is a nonlinear manifold. It can
be locally approximated by a Euclidean space, but, in such

small regions the energy landscape is rugged and relatively

flat to provide some guidance. As indicated in Sec. I, the

protein-docking community has explored 1-dimensional en-

ergy funnels (in RMSD plots); yet, high-dimensional funnels

in SE(3) or SO(3) have neither been validated nor explored.
To overcome these difficulties, the strategy we adopt is to

pursue optimization separately in each of the two subspaces –

the translational subspace R
3 and the orientational subspace

SO(3) – and then weave these moves into a coordinated
movement of the receptor towards the ligand.

D. Parametrizations of the Rotation Group

To optimize these reduced potentials over x ∈ SE(3) the
parametrization of SO(3) is critical. The shortest curves –
or minimal geodesics – on the SO(3) manifold are of the
form R(t) = R0e

Ωt, where Ω is a 3 × 3 skew-symmetric
matrix formed by the elements of some vector ω ∈ R

3.

In this curve, R0 ∈ SO(3) is the initial point and R(1)
is the final point. Hence, a parametrization of SO(3) can
be obtained by mapping rotation matrices R ∈ SO(3) to
vectors ω ∈ R

3 through the relationship R = R0e
Ω, where

Ω is a skew-symmetric matrix formed by the elements of ω.

This parametrization produces deep and wide enough funnels

of protein binding energies.

E. Coordinating Translational and Rotational Moves

The ultimate goal in refinement-stage docking is to start

from some initial position and orientation of the ligand and

move in the conformational space defined by the complexes

in some conformational regions to form the minimum energy

complex in the region. If the region we are working with

contains the native complex, then our objective is to produce

a high-quality (< 1–3Å RMSD) approximation.

Let us represent the energy function to be minimized as

f(r,ω) where the receptor is held fixed, r ∈ R
3 denotes the

position of the ligand, and ω ∈ R
3 maps to an orientation of

the ligand in SO(3) using the exponential parametrization
described above. We use the following series of transla-

tional/orientational adjustments:

1. Orientational Adjustment: Start with a given starting
structure characterized by (r0,ω0) and optimize the energy
over ω within some hypercube centered at ω0 while keeping

the translation vector fixed at r0. This optimization can

be done using our SDU algorithm as ω is unconstrained

in a Euclidean space. Suppose this yields a new structure

characterized by (r0,ω1); this is a structure that has oriented
itself to minimize the energy potential.

2. Translational Adjustment: Start with (r0,ω1) and now
optimize over r in some region centered at r0. That is, using

the ω1 orientation make a “step” towards the receptor in

order to minimize the energy potential. Again, this can be

done using our SDU algorithm.

3. Convergence Criterion: Repeat steps 1 and 2 above until
no significant movement of the ligand is observed.

We note that even though each translational and orienta-

tional adjustment is in some small region of R
3 and SO(3),

respectively, it is achieved by global optimization. That is,

these moves are not local (in the sense of local optimization)

and involve overcoming significant energy barriers.

III. RESULTS

We tested the proposed approach against a standard Monte

Carlo minimization using the Metropolis acceptance crite-

rion. The test set consists of 10 arbitrarily chosen bound pro-

tein complexes from the benchmark set of [10]: 5 enzyme-

inhibitor complexes (1AVW, 1BRC, 1CSE, 2KAI and 2PTC)

and 5 antigen-antibody or other ones (1A0O, 1AHW, 1AVZ,

1MLC and 2JEL). We place the ligand about 10 Åaway from
the receptor and orient it by rotating the native orientation

by 0.8 radian on average (i.e., 46◦) around an arbitrary axis.
This results on average in ligands 15 − 20 Åaway (binding
site of the ligand, Cα) from the native one. Our initial search

region consists of a 12 Åcube in the translational subspace
and a 0.3 radian cube in the orientational subspace of local
exponential parameters. The native structure x∗ is beyond

this region. Samples are uniformly generated in both of these

regions until underestimators are constructed. Then biased

sampling guided by the underestimators is adopted. Although

function evaluation is negligible in these cases with reduced

potentials, we should keep in mind that in docking actual

proteins function evaluations (e.g., using CHARMM [11] or

other complex potentials) dominate all other tasks. Hence,
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both algorithms take at most 1000 energy evaluations for

each sample path and we collected 100 sample paths for

each algorithm per protein complex.
We report the success rates η of both algorithms for

each protein where “success” is defined based either on

energy (F (x) � 0.95 × F (x∗), cf. Table I) or on similarity
(RMSD � 3 Å, cf. Table II). K is the required number

of sample paths (or, equivalently, energy evaluations in the

thousands) to guarantee a success with a probability of 95%

(K = max{log(1−η)(1−P ), 1}). The last row of each table
reports average results over all 10 complexes.

TABLE I

RESULTS WITH REDUCED POTENTIALS 1 AND 2 BASED ON ENERGY.

Potential Reduced 1 Reduced 2

Algorithm MC SDU MC SDU
Measure η(%) K η(%) K η(%) K η(%) K

Enzyme-Inhibitor Complexes

1AVW 71 2.4 93 1.1 13 21.5 34 7.2

1BRC 89 1.4 98 1.0 19 14.2 25 10.4

1CSE 66 2.8 87 1.5 32 7.8 40 5.9

2KAI 82 1.7 93 1.1 24 10.9 23 11.5

2PTC 79 1.7 97 1.0 21 12.7 23 11.5

Antigen-Antibody or Other Complexes

1A0O 92 1.2 100 1.0 44 5.2 68 2.6

1AHW 58 3.5 92 1.2 19 14.2 20 13.4

1AVZ 61 3.1 83 1.2 34 7.2 62 3.1

1MLC 45 5.0 94 1.0 17 16.1 48 4.6

2JEL 88 1.4 96 1.0 26 9.9 28 9.1

Average 73.1 2.42 93.3 1.11 24.9 11.97 37.1 7.93

TABLE II

RESULTS WITH REDUCED POTENTIALS 1 AND 2 BASED ON RMSD.

Potential Reduced 1 reduced 2

Algorithm MC SDU MC SDU
Measure η(%) K η(%) K η(%) K η(%) K

Enzyme-Inhibitor Complexes

1AVW 42 5.5 64 2.9 37 6.5 66 2.8

1BRC 81 1.8 88 1.4 64 2.9 83 1.7

1CSE 43 5.3 74 2.2 37 6.5 53 4.0

2KAI 74 2.2 82 1.7 63 3.0 75 2.2

2PTC 69 2.6 87 1.5 53 4.0 80 1.9

Antigen-Antibody or Other Complexes

1A0O 48 4.6 77 2.0 37 6.5 75 2.2

1AHW 51 4.2 78 2.0 32 7.8 58 3.5

1AVZ 40 5.1 68 2.1 31 8.1 70 2.5

1MLC 34 7.2 75 2.1 32 7.8 57 3.5

2JEL 63 3.0 93 1.1 40 5.9 53 4.0

Average 54.5 4.15 78.6 1.9 42.6 5.9 67 2.83

Based on the results above, we clearly see that SDU out-

performs Monte Carlo. Using the more challenging reduced

potential 2 and defining success based on energy, SDU needs

on average 7,930 energy evaluations compared to 11,970 for

Monte Carlo in order to reach the same level of performance;

an efficiency gain of 33.8% (cf. Table I). If instead we define

success based on similarity, the corresponding numbers are

5,900 for Monte Carlo and 2,830 for SDU, i.e., SDU cuts
energy evaluations by a more than a factor of two (cf.
Table II). It can also be seen that for antigen-antibody or

other complexes the gap is even wider. In docking with more

complex potentials, these comparisons reflect the relative

computational requirements of the two algorithms since

energy evaluations would dominate all other tasks.
This significant gain in efficiency is due to SDU’s ability

to exploit energy funnels, thus, zooming in more quickly in

interesting regions of the energy landscape. We acknowledge

that standard Monte Carlo minimization can be improved

by simulated annealing-type modifications. Yet, we do not

expect this to drastically change the qualitative advantage of

SDU which benefits from the global structure of the energy

landscape rather than relying on mostly local moves (as

Monte Carlo does).

IV. CONCLUSION

We developed a new computational approach for protein

docking exploiting energy funnels in the 6-dimensional space

of translations and rotations of the ligand with respect to the

receptor. The approach consists of a series of translational

and orientational moves of the ligand towards the receptor.

Each move is performed using the Semi-Definite Under-

estimation (SDU) method, introduced in in [8], which can

exploit funnel-like energy functions.

Using two residue-level potentials, we compared our ap-

proach with Monte Carlo on a set of 10 protein complexes,

including enzyme-inhibitor, antigen-antibody, and other. To

achieve the same level of performance (produce a near-

native ≤ 3Å RMSD complex) our approach reduces energy
evaluations by more than a factor of two, on average. If

instead the requirement is to produce a conformation with

energy within 5% of the native, then the efficiency gain is

33.8%, on average.
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