
 
 

  
Abstract— High-throughput gene expression is an important 

aspect of modern post-genomic research. Microarray 
technology is the driving force of this revolution, a technology 
that allows the simultaneous monitoring of expression for 
thousands of genes. The need for accurate and reproducible 
research has driven the development of robust analysis 
frameworks for maximizing the information content of 
biological data. In microarray imaging technologies, several 
non-linearities in the experimental process render the 
measured expression values prone to variability and often, to 
poor reproducibility. Accurate segmentation of the true signal 
is a very important task, not least because a single value per 
spot needs to be derived for further knowledge discovery 
analysis. In this paper, we present a fully automatic 
segmentation method for improving the spot segmentation 
result. The method doesn’t make any assumptions concerning 
the number of classes present in each image spot, and it isn’t 
driven only by the most intense features, since it takes into 
account the underlying “hybridization ground truth” derived 
from both information channels of the spotted arrays. Our 
method is compared to widely used, state-of-the-art 
segmentation methods in microarray image analysis in a study 
of a metabolic disorder in yeast, where replicates of reporters 
are present. Initial results indicate that our method yields more 
reproducible log ratio measurements across replicates.  

I. INTRODUCTION 
N microarrays, an array of DNA reporters is hybridized 
with labeled samples to study differential expression or 

patterns of gene expression. The expression of each gene 
results in increased concentration of the corresponding 
mRNA. DNA microarrays are used for estimating the 
concentration of mRNAs of living cells using reporters, that 
each matches a particular mRNA in the cells. The extracted 
mRNA is converted to cDNA and then every sample is 
labeled. For expression analysis, there are many 
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technologies of microarrays production but the field has 
been dominated by two major technologies, the Affymetrix 
GeneChips and the spotted microarrays. 

The first technology is patented and the manufacturing of 
probes is done by direct synthesis, photolithographically. 
The Affymetrix chips can handle only one fluorochrome, so 
two chips are required for the comparison between two 
samples. The segmentation of the square probes is 
straightforward; the signal is the 75th percentile of all but the 
edge pixels. 

The second technology uses manual deposition of probes 
and the manufacturing can be done even with home-made 
robots [1]. The user can label multiple samples with 
different fluorescent dyes. The two most commonly used 
dyes – also referred as fluorochromes – are the cyanine dyes, 
Cy3, that is green and Cy5, that is red. After mixing, the 
labeled samples (usually two) are hybridized to the reporters 
on the glass slides. Then, the unhybridized material is 
washed away and the slide is scanned. The scanned area is 
divided into equally sized pixels and the scanner produces 
for each dye a digital map (image channel) of the 
fluorescence intensities for each pixel. Within each spot, 
pixel intensities represent the relative amount of fluorescent 
dyes which, in turn, is proportional to the reporter quantity. 
The spotting and drying procedure introduces spatial 
variability of the reporter quantity across each spot. 
However, this quantity distribution is equal in both channels 
(e.g. Cy3, Cy5), and therefore, the ratio of the corresponding 
pixel intensities should be constant. This fact is exploited in 
our segmentation method.  

Accurate spot segmentation is an essential analysis step in 
spotted arrays technologies (a comprehensive review on the 
subject can be found in [2-3]). The aim is to reduce the 
image to single gene-expression values per spot, i.e. the log 
ratio of the fluorescent intensities. Background pixels can 
underestimate the true expression value of each channel, 
leading to potentially false negative calls in differential 
expression. On the other hand, outlier pixels, representing 
hybridization defects, nearby spots, dust, etc., may 
overestimate the expression value and create potential false 
positive calls. The first broadly used method, used a fixed 
circle segmentation algorithm, included in the ScanAlyze 
Software (Michael Eisern, Univeristy of Berkeley, 
California) [4]. This algorithm only works when spots are 
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circular and roughly equal in size, which is far from the truth 
in both aspects. To cope with this problem, adaptive circle 
segmentation was developed, usually based on histogram 
thresholding between background and spot [5]. This method 
was further enhanced with spatial constraints to eliminate 
“outlier” pixels, (e.g. the constrained region growing 
algorithm in ImaGene, one of the most widely-used 
commercial analysis software [6]). In [3], the existing 
algorithms (at that time) are compared, and the Spot 
software is proposed, which uses a seeded region growing 
(SRG) algorithm for spot segmentation. The latest version of 
the software includes a second segmentation option, using 
globally optimal geodesic active contour (GOGAC) [7]. In 
[8], a model based approach for segmentation is presented, 
that clusters each spot into 1 (no spot present) to 3 
(background, spot and outliers) classes, using the appropriate 
Gaussian mixture model that maximizes the Bayesian 
Information Criterion (BIC). This is incorporated into 
‘spotSegmentation’, an open-source software package. 

We argue that the gene-expression signal in each 
microarray spot can’t be considered as a single homogenous 
entity. Therefore, no assumptions should be made 
concerning the number of classes that might be present 
within each spot, since this can vary according to the 
reporter quantity distribution, the background variability, 
and the presence of artifacts. Additionally, narrowing the 
initial estimate of classes to a fixed value (as in [8]), means 
that a number of potential outliers can affect the value of the 
signal, especially if they are spatially connected to true spot 
signal regions. 

In this paper, we propose a two-channel segmentation 
framework that aims to provide a more robust and intuitive 
segmentation. We first introduce a pre-processing step that 
removes high intensity outliers outside the expected spot 
area (explained in Section II), thus partially normalizing the 
dynamic range of values in the Cy3, Cy5 channels. Then, the 
number of clusters is determined by applying the Bayesian 
Information Criterion, in the log product of Cy3 and Cy5. 
The rationale behind this step is that the reporter area in each 
spot is the same in both channels. Therefore, even weak 
signals will be significantly amplified with respect to the 
background, where isolated high intensity noise pixels are 
random for each channel, and therefore, the log 
multiplication minimizes their influence. 

We also introduce an optimization step in the segmented 
log ratio image of each spot, where we remove pixels, which 
differ significantly from the others. This is inspired from the 
fact that each spot image has the same inhomogeneity in its 
intensity values emanating from the distribution of the 
reporter’s quantity. As a result, the true log ratio in the pixels 
of each spot is constant. This in turn also suggests that the 
log ratio of replicate spots should be the same (even if the 
reporter’s concentration differs). This observation is used for 
comparing our segmentation results to well know methods, 
as is described in section 3. 

The proposed method is described in the next section.  

II. METHODS 

A.  Spot Addressing 
In order to automatically extract significant information 
from microarray images, it is imperative to address each spot 
separately, in order to be able to compare it to its local 
background, segment it and compute the log ratio across the 
channels. A detailed account of our approach for microarray 
spot addressing is out of the scope of this paper (the authors 
aim to publish a more extensive account of their image 
analysis framework later). We summarize the steps that 
comprise our approach: 

a) Channel Registration: This is a potential problem for 
microarray imaging, (e.g. when individual channels are 
scanned sequentially, some motion can occur). Since we 
combine the pixel information from both channels, accurate 
registration at pixel level is necessary. In order to align the 
image data, a plethora of ‘classic’ algorithms is available. 
We have used an image similarity approach based on 
previously introduced measures (e.g. mutual information, 
cross-correlation), in order to geometrically align microarray 
images. 

b) Artificial grid spot addressing: Based on the image 
resolution and spot spacing in a given experiment, we 
construct an artificial grid where the spots are perfect 
circular regions with diameters equal to the average spot 
diameter of the brighter spots (e.g. automatically defined by 
thresholding and labeling). Initially, the grid is registered to 
the registered channels (as in step a), as shown in Fig 1c. 
The grid is then affine transformed, in order to account for 
possible skew in the array. This is done by rotating first 
horizontally and then vertically and calculating the rotation 
angles for which the alignment signal (sum of rows, columns 
respectively), is maximized. The calculated binary grid 
defines the theoretical spot area (hereafter denoted as TSA), 
as shown in Fig 1d. However, we need to stress that this is 
not the solution of the segmentation problem, since within 
each TSA there is inherent variability of pixel values 
corresponding to different classes. For this reason, in the 
next step we utilize a square image segment around each 
TSA.  

B. Segmentation 
The segmentation algorithm we propose is summarized 

below: 
i. High intensity clusters outside the TSA are removed in 
both channels by amplifying structures that are brighter than 
their surroundings. This is based on morphological 
reconstruction as described in [9]. Then, such clusters are 
labeled and removed, if their center is outside the TSA. Note 
that we don’t completely remove background (until step v.), 
so as to capture it’s statistics and identify similar regions 
inside the spot. The effect of this step is illustrated in Fig.3b, 
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where background clusters (visible in Fig3.a), have been 
removed. 
 
ii. The A, M images are computed from the two channels: 
Ch1 is denoted as R(i, j) and Ch2 as G(i, j). Then A and M 
can be calculated for each pixel according to (1,2) 

 
]⋅⋅= j) G(i,j) [R(i,log 0.5  j) A(i, 2
                   (1) 

j)] G(i, / j) [R(i,log  j) M(i, 2=                           (2) 
 

iii. Then the Bayesian Information Criterion (BIC) is 
computed on the log product image A (see [8] for details on 
this application of BIC), for 1:20 classes segmentation using 
the well known fuzzy clustering algorithm. The model that 
corresponds to the highest BIC is chosen to segment image 
A. In Fig. 2 (last row), the correct number of classes (as is 
indicated by the BIC calculated in A), is 7. If the number of 
classes is constrained (e.g. to 3 as in [8]), the segmentation 
result is incorrect (the doughnut in Fig 2, middle row, is 
included in the segmentation result although its 
corresponding M values are clearly different from the rest of 
the spot), and the selected class contains noisy features 
mainly on the edges of the spot. 
 
iv. The largest clustered class (in number of pixels) is 
chosen, provided that more than half of its pixels lie within 
the TSA. This will ensure that a doughnut won’t be selected 
as the spot signal in low quality printed spots, since it values 
are clustered together wih the background. Based on this 
class, Ch1 and Ch2 are segmented. For eliminating any 
residual background pixels in the segmented class, step i. is 
repeated.  

 
v. Occasionally, impurities (usually of high intensities), 
inside the TSA are also segmented as true spot. This affects 
significantly the measured mean intensity of each channel, 
and consequently the resulting log ratio of the spot. To 
address this, we compute the Median Average Deviation 
(MAD) of the segmented spot M values and eliminate pixels 
with significantly different log ratios (2 MADN from 
median, where MADN is MAD/0.6745). This is illustrated 
in Fig3. d, resulting in a reduction of the log ratio range and 
removal of the outliers. Fig. 3c shows that the ranges of 
values in the corrected segmented images are normalized 
when excluding the M outliers. This has a significant effect 
in the comparative results presented in the next section. 
 

 
Fig. 1.  a: Original image, b: Original image histogram equalized, c) 
Registration grid (black circles), aligned with original image, d) 
Corresponding regions of the original image based on the grid determining 
the theoretical spot area (TSA). 

 

 
Fig. 2.  Top row, left to right: Channel 1 (Ch1) and Ch2 are combined to 
form the A, M images. Middle row, left to right: Corresponding results 
when using a constrained, to three classes, segmentation. Last row, left to 
right: Segmentation results using our method with no constrains on the 
number of classes (BIC indicates 7 distinct classes in A). 

III. RESULTS 
For assessing the presented method, 100 spots (41 

duplicates and 6 triplicates) were used from a gene 
expression study of a metabolic disorder in yeast that was 
performed in our laboratory. In order to define an 
unbiased dataset, the expert selected half of the cases to 
be “clearly defined” spots in all replicates (i.e. relatively 
easy to segment) and the other half “subtle” (i.e. difficult 
to segment). Our method was compared to the following 
widely used methods: ImaGene [6], Spot Software with 
both SRG [3] and GOGAC [7] segmentation algorithms, 
and spotSegmentation [8]. The log ratio range in 
replicates was used as a measure for comparing the above 
methods. Fig. 4 shows the boxplots of the results for all 
the methods. The calculated mean and standard deviation 
for each method were: SegA: 0.35±0.22, SegAM: 
0.27±0.17, ImaGene: 0.33±0.29, GOGAC: 0.55±0.37, 
SRG: 0.73±0.54, spotSegmentation: 0.43±0.32 (the 
software failed to return spot results in 50% of the ‘subtle’ 
cases, in at least one of the replicates analyzed). Note that 
in Fig. 4, we have reported our results with (SegAM), and 
without (SegA), the optimization step (Section IIB v), in 
order to assess its added value. 
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Fig. 3.  a: The original spot channels, b: Corresponding segmented regions,  
c: Optimization of the segmentation result by robustly removing M outliers, 
as is shown in the corresponding boxplots in d. Note the gradual reduction 
of the gray-scale dynamic range from a to c in the noisy Ch1. 

 

 
Fig. 4.  Comparison of different segmentation methods by using the range 
of log ratios in replicate spots as a measure of reproducibility.  The range 
should be equal to zero in the ideal case. 

 

IV. DISCUSSION 
A novel method for spot segmentation is presented. The 

method uses both information channels without any 
assumptions for the number of classes present, which may 
compromise the result (see Fig. 2). Since both segmented 
image channels have the same spatial extent, the log ratio M 
can be estimated as an array, and this allows us to optimize 
the segmentation result on the basis of further removing 
image values that drive the log ratio outside a 2 MADN from 
median interval. This robust estimation of outliers renders 
the final segmentation result more homogenous with respect 
to the range of corresponding M values. This is in line with 
the theoretical concept that the segmented channel values 
should follow the reporter quantity distribution within each 
spot, while log ratios remain constant. 

The initial results indicate that our method can achieve the 
smallest range of estimated log ratios in replicate spots, 
which is a measure of increased reproducibility. We aim to 
validate this method in a large number of replicate spots, and 
when possible in the same data used in previous 
publications, for direct comparison. We believe that 
reduction of variability between replicate spots increases the 
ability to detect differential expression, but this will be 
carefully validated in our future work. We also argue that the 
range of log ratios in replicates used in this paper for 
assessing different segmentation methods could become a 
standard quality control measure also providing uncertainty 
weights for individual differential expression values. 
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