
 

Abstract— A multi-channel method for patient specific and 
patient independent, EEG based neonatal seizure detection is 
presented. Two classifier configurations are proposed and tested, 
along with a number of classifier models. Existing methods for 
neonatal seizure detection have been empirical threshold based or 
based on a single EEG channel. The optimum patient specific 
classifier for EEG based neonatal seizure detection was found to 
be an Early Integration configuration employing a linear 
discriminant classifier model. This yielded a mean classification 
accuracy of 74.66% for 11 neonatal records. The optimum 
patient independent classifier was an Early Integration 
configuration with a linear discriminant classifier model giving a 
mean accuracy of 72.81%. 

I. INTRODUCTION

eizures are often the primary indicator and first sign of 
neurological or central nervous system dysfunction in a 
newborn infant. Prolonged untreated seizures can result in 

long term neurological damage and impairment in the 
newborn. Newborns with seizures have poor health outcomes 
(morbidity in 50% of survivors) and a high probability of 
death (30%)[1]. There is disagreement about the incidence of 
neonatal seizures but it is generally accepted that they occur in 
6% of low birth-weight infants [2] and in approximately 2% of 
all newborns admitted to the neonatal ICU [3, 4]. As such 
seizures are most common in the neonatal period. It is thought 
that early detection and treatment of seizure can significantly 
improve prognosis. As a result there is a need for a system that 
can detect the presence of seizure in the newborn, allowing 
timely medical intervention. The primary tool used by 
neurophysiologists in diagnosing seizure is the 
electroencephalogram (EEG) and as a result most seizure 
detection algorithms are based on the EEG. 
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A number of algorithms have been proposed for detecting 
neonatal seizures from the EEG. The Gotman method [5] is 
based on epoched values of frequency, bandwidth and power 
in the frequency spectrum. It is based on a single channel of 
EEG and employs empirically derived thresholds for 
classification. Celka and Colditz [6] reported a patient specific 
method requiring pre-processing, based on measuring the 
complexity of the EEG in the time domain. The method of Liu 
et al [7] relies on quantifying the amount of periodicity in the 
autocorrelation function of 30s epochs of EEG. Like the 
Gotman method, the Liu method relies on empirically derived 
thresholds rather than those derived from real training data. 
The Gotman and Celka methods are defined for a single 
channel of EEG while the Liu algorithm declares seizure if one 
or more channels report a seizure. Altenburg et al [8] used a 
mathematical method called synchronization likelihood to 
quantify dynamical entrainment across EEG channels and used 
this to detect the presence of seizure in the neonatal EEG. A 
synchronization likelihood score above a given empirical 
threshold was used to perform a binary classification of that 
epoch.  

To date, neonatal seizure detection algorithms have resisted 
successful transition to the NICU. An independent comparison 
of three such methods (Gotman, Liu & Celka) found that none 
were suitable for use in a clinical environment [9]. Algorithms 
based on empirical threshold values or a single channel of 
EEG, do not have the ability to cope with real multi-channel 
seizure EEG as would be encountered in the NICU. For this 
reason multi-channel neonatal seizure detection algorithms 
trained on real data may represent an important step towards 
neonatal seizure detection systems suitable for clinical 
deployment. 

II. AIM

The aim of this study was to compare two novel multi-channel 
EEG classifier configurations and a number of statistical 
classifier models for accurate detection of seizures in the 
newborn. 

III. DATA SET

A dataset of 11 recordings from 9 neonates containing 633 
seizure events, with mean seizure duration of 4.22 minutes, 
were recorded and analyzed. The records had a mean duration 
of 12.5 hours. Each recording contained 7-12 channels of 
EEG. 10 recordings were made on the neonatal intensive care 
units of the Unified Maternity Hospitals in Cork, Ireland using 
the Taugagreining Nervus video EEG system and sampled at 
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256Hz. The remaining recording was made at Kings College 
Hospital London, U.K. and sampled at 200Hz. All the data for 
each recording was included in the analysis regardless of 
record length or quality. Electrographic seizures were 
identified and annotated by an expert in neonatal EEG (author: 
G. Boylan). Annotations give information on the time of onset 
and the duration of the electrographic seizure. Unlike some 
previously published research, our annotations did not contain 
information on seizure location. 

IV. METHOD

A. Feature Extraction 
The EEG for each channel was low pass filtered using a 
Chebyshev IIR filter with a corner frequency of 34Hz and then 
considered in terms of 2048 sample sliding windows. A 25% 
or 512 sample sliding step was used. Six features were 
extracted from each EEG epoch for each EEG channel.  
The first three features were used by Gotman et al [5] 
(dominant frequency, bandwidth of the dominant spectral peak 
and spectral power ratio at the dominant frequency), to 
distinguish between seizure and non-seizure epochs in the 
newborn EEG. The frequency spectrum was calculated for 
each epoch using the FFT. The dominant frequency was 
defined to be the frequency in the spectrum with the largest 
average power in its bandwidth. The bandwidth of the 
dominant spectral peak was defined as the width in hertz 
between the two half power points of the dominant spectral 
peak. The power ratio was defined as the ratio of the power in 
the dominant spectral peak to the power at the same frequency 
in the ‘background’ EEG, where the background EEG is a 
point 60s behind the current window. 

As neonatal seizure EEG shares many characteristics with 
adult epileptic seizure EEG, a number of features used in 
epileptic seizure prediction were tested and deemed suitable 
for this application. Spectral entropy is a feature often used in 
EEG signal analysis. Recent evidence suggests that seizure 
activity represents a reduction in the complexity of the 
underlying brain dynamics [6]. Spectral entropy is a measure 
of complexity and represents a potential feature for seizure 
detection. Several authors have used spectral entropy to 
quantify the behavior of the EEG during adult epileptic seizure 
[10, 11]. The EEG spectral entropy was calculated for each 
epoch using Shannon’s entropy formula (Eqn.1) where P(x) is 
the power spectral density (PSD) for the epoch: 

( ) ( ) ( ) (1)log 2−= xPxPXH
D’Alessandro et al [10] employed spectral entropy as well as 
nonlinear energy and a number of other features to predict 
epileptic seizure activity in adult epileptic patients. Nonlinear 
energy is calculated for each sample per epoch using Eqn.2, 
the mean nonlinear energy is then taken as a feature for each 
epoch.  

( ) ( ) ( ) ( ) (2)112 +−−= kxkxkxkN
Esteller et al [12] proposed curve length/fractal dimension as 
potential features for epileptic seizure detection in adults. 
Curve length is calculated on an epoched basis using Eqn.3. 
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The six features for each channel were then normalized and 
combined into feature vectors for each epoch. 

B. Classifier Models 
A number of statistical classifier models were used in this 
study, including linear discriminants (LD), quadratic 
discriminants (QD) and regularized discriminants (RD). 
Training of all classifier models estimates classifier 
parameters, class conditional mean vector and covariance 
matrices directly from the data. Parameters were calculated 
using maximum likelihood estimation. An LD classifier finds 
the linear combination of features that maximizes Fishers 
Discriminant ratio, assuming a common covariance matrix, 
separate mean vectors and normal distribution for each class 
[13]. The performance of the LD patient independent classifier 
was further improved by weighting  the covariance matrix and 
mean vectors by the duration of the records in the training set 
as discussed in [14]. The LD classifier with weighting is 
referred to as LD* henceforth. A QD classifier uses a quadratic 
combination of features to maximize class discrimination. The 
model assumes separate mean vectors and covariance matrices 
for each class along with normal class distribution. Similarly 
any classifier model with mean and covariance weighting is 
referred to with an asterix (*). 

In pattern recognition problems with small data sizes and 
large numbers of features, some of the parameters are not 
always identifiable from the data and so the problem is said to 
be ill-posed. This is often the case in biomedical signal pattern 
recognition. Regularization can present a solution to this 
problem, and can be viewed as an attempt to bias estimates 
away from their sample values towards more physically 
plausible values [15]. Two methods for stabilizing the 
covariance estimates for each class are combined and used in 
this study. Regularization towards common covariance matrix 
with parameter  is given in Eqn.4, where k is an estimate of 
covariance matrix for class k: 

( ) ( ) (4)1 kk +−=
Regularization towards diagonal matrix with eigenvalues equal 
to the averaged eigenvalues of the sample based estimate of 
the covariance matrix is given in Eqn.5, where I is the nxn
identity matrix. 

( ) ( ) ( ) (5)1 Itr
n
rrr kkk +−=

Combining these two equations gives a combined 
regularization formula (Eqn.6), where 0 1 and 0  r 1: 
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( ) ( ) ( ) ( )( )Itr
n
rrr λλλ kkk +−= 1,      (6) 

The discriminant value used in regularized discriminant 
analysis is calculated using the new estimate for the class 
conditional covariance matrices and the quadratic discriminant 
formula [15]. Regularization parameters of =1 and r=0 
correspond to a linear discriminant classifier while =0 and 
r=0 correspond to a quadratic discriminant classifier. The 
optimum set of regularization parameters was determined for 
each configuration for the patient specific and patient 
independent classifiers. The optimum classifiers were 
determined by finding the regularization parameters that 
yielded the most balanced values of accuracy and sensitivity. 
Fig.3 (referred to as a regularization plot) shows the 
classification accuracy as the parameters  and r were varied 
over the range 0 to 1 in increments of 0.1. Weighting of the 
class specific mean vectors and covariance matrices was 
implemented for all pairs of regularization parameters and the 
results compared to the un-weighted results.  

C. Classifier Configurations 
Two classifier configurations for combining information 
across EEG channels are reported here. The first configuration, 
called the Early Integration (EI) configuration concatenated 
features vectors containing m features from n channels into a 
large feature vector which was then fed to a classifier. Six 
features were extracted from each EEG epoch for each 
channel. The features for each channel were sorted according 
to feature type and then sorted into numerical order. The 
grouped, sorted features were then concatenated into a ‘super’ 
feature vector (as shown in fig.1). The sorting function 
removes information about the spatial location of the seizure 
from the training set, preventing the classifier from expecting 
seizure activity in a particular channel. This has a numerical 
selection effect on the features for the patient independent 
classifier. 

Error! No topic specified.
Figure 1: Early Integration (EI) classifier configuration 

The second configuration, the Late Integration (LI) classifier 
configuration, employed n separate classifiers for each m
dimensional feature vector for each of the n channels. The 
output class labels from each of the classifiers were then 
combined to produce a decision. A number of classifier 
combination methods were investigated including majority 
voting, max score and mean score (mean probability) 
combination [15]. The mean score combination rule was found 
to give the best classification performance. The mean score 
combination rule takes the mean score or mean output 
probability from a collection of classifiers. The class decision 
is then that class with the highest mean probability. LI has the 
advantage that each channel is classified individually, this 
means that channels containing artifact or in which the lead 

has dropped off can be ignored by the decision function. Fig 2 
gives a graphical explanation of the LI configuration. 

Error! No topic specified.
Figure 2: Late Integration (LI) classifier configuration 

In order to obtain better training of the classifier models, 
epochs thought to contain artifact were excluded from the 
training set. This exclusion was performed automatically, on a 
per channel basis in the training set in the LI configuration so 
that the classifier would be tested on real data containing 
movement artifacts, eye-blinks and electrode drop off. If the 
artifact measure for that epoch was over an empirically derived 
threshold the epoch was excluded from the training. As a result 
a more realistic measure of classifier performance could be 
obtained. In the EI configuration, an epoch was excluded from 
analysis if the mean of the artifact measure was over an 
empirically derived threshold for all records. Each epoch was 
automatically examined for the presence of artifact using the 
EEG stability measure introduced in [5].  

D. Classifier Performance Estimation 
Each configuration was considered as both patient specific and 
patient independent classifiers. The performance of each 
patient specific classifier was estimated using m fold cross 
validation on each record. Cross validation randomly splits 
each record into m sections or ‘folds’, m-1 of these folds are 
then used to train the classifier and the remaining fold is then 
used to test the performance of the classifier. By shuffling the 
data and repeating this procedure n times and averaging the 
resulting accuracies for the training and test sets, an unbiased, 
low variance estimate of the classifier performance can be 
obtained. In this study 10 folds and 10 shuffles were used.  
The performance of the generalized or patient independent 
classifier was estimated using cross validation across all 
records. This involved training the classifier model on (z-1) of 
the z EEG records and using the zth record to test the classifier 
performance and then rotating through the z possible 
combinations of training and test sets, taking the mean of the 
result for all iterations as the patient independent performance 
estimation.  

E. Classifier Performance Measures 
All classifier systems considered in this study were epoch 
based. For this reason all results quoted are on a 2048 sample 
epoch basis. The classification accuracy (Acc) is defined as the 
percentage of epochs correctly classified by the system. The 
sensitivity (Sens) is defined as the percentage of labeled 
seizure epochs correctly identified as seizure epochs by the 
system. The specificity (Spec) is defined as the percentage of 
labeled non-seizure epochs correctly classified as non-seizure 
by the system. The false detection rate (FDR) is then 100-
Spec. A receiver operating characteristic (ROC) curve is a plot 
of class sensitivity against specificity as a threshold parameter 
is varied. The area under the ROC curve (calculated using 
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trapezoidal numerical integration) is an effective way of 
comparing the performance of different features or classifiers. 
A random discrimination will give an area of 0.5 under the 
curve while perfect discrimination between classes will give 
an area of 1 under the ROC curve. The ROC area is equivalent 
to the Mann Whitney version of the Wilcoxon rank-sum 
statistic [16]. 

V. RESULTS

A. Patient Specific 
The results classifier performance metrics as detailed in the 
method section are given for each of the classifier models. The 
optimum patient specific classifier was the EI configuration 
with regularization parameters; =1, r=0. This is equivalent to 
an LD classifier. Table 1 gives the classification results for 
each configuration for the patient specific classifier. The 
results given for RD are for the best regularized classifier 
model for each configuration.  
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Figure 3: Classification accuracy for record 11 with varying 
regularization parameters. The optimum classifier had regularization 

parameters = 0.9, r=0.2 

ROC curves were generated for both patient specific and 
patient independent classifiers for both configurations and all 
classifier models. A value is given in table 1 for the area under 
the ROC curve in each instance. For the patient specific case 
the value given is averaged across all records. Fig.3 shows the 
patient specific regularization plot for record 11. The optimum 
patient specific classifier for each record may be determined 
from these plots. Similarly the optimum patient independent 
classifier for this application may be determined from a 
regularization plot. 

Config/ 
Model 

Reg Acc 
(%) 

Sens 
(%) 

Spec 
(%) 

ROC

 R     
EI  LD 1 0 74.66 63.31 77.86 0.77 
LI LD 1 0 65.25 48.00 69.99 0.61 

EI QD 0 0 41.19 87.32 30.05 0.70 
LI QD 0 0 42.73 77.40 34.13 0.64 
EI RD 1 0 74.66 63.31 77.86 0.77 
LI RD 0.1 0.4 45.47 74.25 37.92 0.63 

Table 1: Patient Specific Results 

B. Patient Independent 
The results given for each classifier were confirmed by ROC 
analysis. Fig.4 shows the ROC curves for the EI and LI patient 
independent classifiers. 
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Figure 4: ROC curves for EI and LI patient independent classifiers using 
the LD* classifier model. 

The optimum patient independent classifier was the EI LD*

configuration with regularization parameters =1 and r=0. This 
is equivalent to an LD classifier model with covariance 
weighting. Table 2 gives the patient independent classification 
results for all classifier models and both configurations. The 
results given are for the best performing classifier for each 
classifier model and configuration. If the best result for that 
classifier model and configuration was achieved with mean 
and covariance weighting this is indicated by an asterix. 

Config/ 
Model 

Reg Acc 
(%) 

Sens 
(%) 

Spec 
(%) 

ROC

 R     

EI  LD* 1 0 65.02 72.73 62.28 0.73 

LI LD* 1 0 59.93 47.07 64.56 0.58 

EI QD 0 0 55.47 64.72 52.13 0.54 

LI QD 0 0 26.86 96.74 1.65 0.37 

EI RD* 1 0 65.02 72.73 62.28 0.73 

LI RD 1 0.6 59.21 37.22 67.14 0.51 

Table 2: Patient Independent Results. * Indicates that classifier model 
employed weighting of mean vectors and covariance matrices by record 

duration. 
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VI. DISCUSSION

Two methods for combining features from n EEG channels are 
considered here, the EI configuration was found to be superior 
for all classifier models. The LI configuration makes the 
assumption that each EEG channel is statistically independent 
from the other channels whereas the EI configuration exploits 
their statistical inter-relationship and the synchronously 
recorded nature of the EEG; treating all channels as related. It 
is clear from this work that assumptions of independence made 
in the LI configuration are weak. The loss of information 
entailed by hardening the decisions for each channel in the LI 
configuration is another reason for the discrepancy in 
performance between the two configurations.  

The performance of all configurations is limited by the 
unavailability of per channel annotations. While it is arguable 
that seizure manifestation will be present in all EEG channels, 
stereotyped seizure EEG manifestations may only be visible to 
the naked eye on a number of channels. As a result this multi-
channel formulation makes the assumption of equal 
manifestation of seizure across channels. Obviously this is not 
the case and will place an upper limit on classifier 
performance. By simultaneously classifying all recorded EEG 
channels, the synchronously recorded nature of the EEG is 
exploited. This approach is validated by recent research that 
suggests that seizure EEG is characterized by a dynamical 
entrainment across EEG channels [17]. 

Classifier models based on regularized discriminant analysis 
represent a compromise between the linear and quadratic 
discriminant classifier models. The linear discriminant 
classifier with mean and covariance weighting by record 
duration was found to be the best classifier model for this 
application. For the patient independent classifier, weighting 
of the class specific mean and covariance matrices by the 
duration of the records in the training set, allowed each record 
to contribute equally to the classifiers’ training.  

Patient specific neonatal seizure detection may have utility 
in the modern NICU. When a clinician is alerted to the 
presence of electrographic seizures, they could then use 
relevant sections and channels of the seizure EEG to tailor the 
training of a base patient independent classifier towards the 
individual patients’ electrographic seizure characteristics. The 
ideal neonatal seizure detection algorithm would be a 
generalized patient independent classifier, which could 
identify seizures from all neonates with perfect sensitivity and 
specificity. Our results are a step towards this ideal. There is a 
marked difference between the patient specific and patient 
independent results reported here. While one would expect 
superior performance from a patient specific classifier it can 
certainly be argued that improved feature normalization 
schemes may further improve the generalized classifier 
performance.  

Faul et al [9] compared three major neonatal seizure 
detection algorithms [5-7] on the same data-set and found that 
none of the three were suitable for use in a NICU environment. 

The data set used by Faul et al is same as is used in this study. 
A limitation on all three methods (along with the method of 
Altenburg et al [8]) is that they were empirically based, a 
seizure was declared when a parameter or combination of 
parameters met an empirically derived value. By taking a 
statistical approach to classification we have allowed decision 
thresholds to be directly determined from the data. Many of 
these methods are based on a single channel of EEG, applying 
the same algorithm independently to each channel, ignoring 
the evident statistical dependencies across channels. 

A deficit in the literature to date is a lack of rigorous 
validation procedures for classifier performance estimation. 
Cross fold validation guarantees an unbiased measure of 
classifier performance. The performance estimates given for 
all configurations are made more pessimistic when the 
annotation paradigm used is considered. In much of the 
previously reported research on neonatal seizure detection, 
results are given based on short duration seizure and non-
seizure records or epochs [7, 8, 18], as opposed to including 
continuous recordings of the duration and quality that would 
be found in real-world, neonatal ICU conditions. The results 
reported by Liu et al [7] were for selected for ‘typicality’. 
Selection of EEG epochs has the effect of optimistically 
biasing results. Methods should be evaluated over a duration 
of several hours. Short duration recordings cannot be 
considered in the same light as results presented for methods 
such as Gotman [5], which use more realistic recording lengths 
and do not exclude any record regardless of length or quality. 
In this study we have used completely unselected recordings 
with an average length of 12.5 hours as a result we feel that 
our results will accurately reflect the performance of these 
algorithms under real world conditions. 

The work presented here has applications in the wider field 
of long-term EEG monitoring. The multi-channel 
configurations reported here may be useful for a variety of 
medical and neuroscience applications as they could form the 
basis of a long term monitoring framework for multi-channel 
or multimodal biomedical signal monitoring. To the best of 
our knowledge this study is the first to propose multi-channel 
EEG classifier configurations and use statistical classifier 
models for neonatal seizure detection. 
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