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Abstract— This work investigates arm acceleration as a
control signal for Functional Electrical Stimulation (FES) of
the upper limb during reaching and grasping. We segment the
reach and grasp motion into phases and present an Artificial
Neural Network (ANN) approach that estimates the phase of
the reaching cycle from accelerometer signals. We then select
the stimulator command that maximizes successful triggering
without unnecessary risk to the patient’s safety. Our results
suggest that the algorithm successfully generalizes between
sessions and patients but is less successful at generalizing
between different motions.

I. INTRODUCTION

Following upper motor neuron damage, motor function
can be restored through the use of functional electrical
stimulation (FES). However, the control of such systems
remains a major challenge. Systems controlled by sources
such as Electromyogram (EMG) and Electroencephalogram
(EEG) signals have been demonstrated although such signals
are limited in terms of transduction, which is sensitive to
external noise, and current surface EEG approaches remain
limited by information transmission rates [1].

As an alternative to electrophysiological signal-based ap-
proaches, a number of groups have used body segment
motion to control both FES [2] and powered prosthetic
limbs [3]. Contra-lateral shoulder motion as a control signal
has proven clinically successful in the Freehand system, used
following high level spinal cord injury [2], but is less than
ideal for subjects with a lower level of impairment.

The motion of a segment on the same limb has been used
to control foot drop stimulation [4] but applying a similar
approach to the upper limb is more challenging. Despite the
existence of characteristic movement patterns, kinematic re-
dundancy of the upper limb and the under-constrained nature
of reaching make it difficult to distinguish such motions from
other types of movement. Further complications arise due to
increased variability in reaching kinematics following upper
motor neuron damage and variation in the desired endpoint
of the reach. The use of an artificial motion to distinguish
control gestures from other movement has been shown to be
feasible, if cosmetically less than ideal [5].

As a first approximation, the input signals must be
processed in such a way as to generate a binary (on/off) out-
put. In gait analysis, where phase transitions are well-defined
and motion is highly periodic, Machine Learning (ML) has
proven successful for several years. Popular tools include

Fig. 1. Experimental set up: the arm is adorned with markers (for rigid
body motion capture) and Inertial Measurement Units (for validation).

Artificial Neural Networks [6], ANFIS [6], [7], Inductive
Logic [6], [4] and Adaptive Logic Networks [4]. Only in
recent years, however, have similar methods been applied to
the upper limb where motion is less constrained. Even then,
results have only been demonstrated using electrophysiolog-
ical measurements [8] and joint angular velocities measured
using flexible goniometers [9].

We propose an approach, developed as part of the EU-
funded Healthy Aims project (www.healthyaims.org), where
we segment the “reach and grasp” motion into three phases
– Reach/Retract (RR), Grasp/Release (GR) and Manipulate
(M) – and use an ANN to estimate probabilities correspond-
ing to our belief that the observed motion “belongs to” each
phase. However, in many cases it is desirable to “err on the
side of caution” when deciding whether to stimulate the hand
e.g. stimulating whilst holding a hot cup of coffee presents
a threat to the safety of the user. Therefore, we minimize
the risk associated with each possible decision (neglected in
previous upper limb studies) using a loss matrix.

To our knowledge, this work is one of the first to use Ma-
chine Learning with accelerometer signals to control upper-
limb FES, based on natural (as opposed to artificial [5])
movement. In contrast to other methods that require the
entire motion history before prediction can take place [9],
our system is currently being prepared for real time trials on
stroke patients.
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Fig. 2. Synthesized acceleration along the axis of the arm.

200 400 600 800 1000 1200

−0.5

0

0.5

Time (frames)

F
ea

tu
re

 v
al

ue

Fig. 3. First three normalized features extracted from original signal.
Note that no features are available until at least one complete ‘window’
(50 measurements, in this case) have been observed.

II. DATA COLLECTION

Ethical approval for the study was obtained and two
hemiplegic stroke patients recruited. Both subjects were more
than six months post-stroke, medically stable and right-
handed with right upper limb function compromised. Both
were able to reach forward towards objects at a comfortable
distance without significant discomfort or pain and had a
modified Ashworth scale of 3 or below in the flexors of the
affected hand, wrist and elbow. Neither subject had fixed
contractures of the elbow, wrist and fingers. Patient 1 was a
32 year old female and patient 2 was an 83 year old male.

Movement data of the right upper limb were collected
using a 10 camera motion capture system (Vicon, Oxford
Metrics, UK). Rigid clusters of markers were placed on the
torso, upper arm and forearm (see Fig. 1), and additional
markers were placed at anatomical locations (e.g. humeral
epicondyles). The measured marker positions were then used
to infer joint centres and rigid body motion of the limbs.

In order to evaluate system performance independently
of errors caused by sensor misalignment during donning
and doffing, we synthesize accelerometer signals [10] from
the computed rigid body motions at a sampling rate of
100Hz. These synthesized signals, validated against actual
measurements recorded from an inertial unit (XSENS MT-
9), were then used as inputs to the algorithm.

III. NEURAL NETWORK DESIGN

The Artificial Neural Network was implemented using the
Neural Network Toolbox in Matlab (The Mathworks, Inc)
and had an input layer of 4 nodes, one hidden layer of 5
tansig nodes and an output layer of 3 softmax nodes. For
computational reasons, the network was trained using Scaled
Conjugate Gradients (trainscg) with 80% of the data used for
training and 20% for validation to avoid overfitting.

For these experiments, we used only the acceleration along
the axis of the forearm (Fig. 2). Although it was possible to
use this raw signal as input to the ANN, we used a window of
50 samples (corresponding to 0.5s) to exploit the time history
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Fig. 4. Assigned “fuzzy” phase labels (membership function values).
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Fig. 5. Example output probabilities produced by the neural network.
This example corresponds to an average loss of 0.097 and the resulting
stimulation has a mean squared error of 0.125.

of the signal. In order to reduce the dimensionality of this
(largely redundant) data, we computed a 4D feature vector
using coefficients from the Discrete Cosine Transform (DCT)
of the original signal. For numerical stability, the coefficients
were then normalized to lie in the range [−1, 1] using the
premnmx function (see Fig. 3) and used as inputs to the ANN.

Although studies have been conducted into hand opening
during reaching tasks for healthy adults [11], the timings
of events for post-stroke reaching are not well defined.
Therefore, we identified phase transitions by inspection,
assigning a “fuzzy” label to each instant in time (see Fig. 4)
to reflect uncertainty close to phase transitions. These fuzzy
labels then served as target outputs from the ANN.

A. Risk-based decision making

Using the softmax transfer function at the output layer
ensures that the output of the network can be interpreted as
a vector of probabilities (see Fig. 5), each element reflecting
our confidence that the observed motion belongs to the
corresponding phase. However, simply selecting a stimula-
tion level based on which phase has the highest probability
does not take into account the risk associated with each
decision. For example, if “Reach/Grasp” and “Manipulate”
were assigned equal probability, we must select the phase
that would present the smallest risk (i.e. Manipulate) should
our decision be incorrect.

We designed the system according to three specifications:

1) For comfort and to minimize power requirements, we
prefer stimulation to be off during “Reach/Retract”

2) For functionality, we require stimulation to be on
during “Grasp/Release”

3) For safety, we demand that stimulation be off during
“Manipulate”

To implement these specifications, we defined a loss
matrix such that each type of misclassification incurred a dif-
ferent penalty according to the risk presented to the patient’s
safety. The penalty for classifying the phase correctly is zero
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TABLE I

MISCLASSIFICATION PENALTIES. WE DENOTE THE TRUE PHASE BY X

AND THE ESTIMATED PHASE BY Y.

X
RR GR M

Y
RR None Medium Low
GR Medium None High

M Low Medium None

whilst a small penalty is incurred if the phase is misclassified
with no difference in stimulation (e.g. Reach/Retract as Ma-
nipulation). A medium penalty is incurred if misclassification
results in stimulation but with no risk to patient safety (e.g.
Reach/Retract as Grasp/Release) whereas a large penalty is
incurred for any misclassification that may endanger the pa-
tient (e.g. Manipulation as Grasp/Release). Table I expresses
these rules in tabular form where we imposed low, medium
and high penalties of 0.25, 0.5 and 1.0, respectively.

Given the three probabilities estimated by the ANN, we
computed the expected loss associated with each possible
decision and selected the phase that incurred the smallest
penalty. This admitted a margin of error such that we could
“err on the side of caution” in critical regions. Stimulation
was ‘on’ only for the Grasp/Release phase of the motion and
‘off’ at all other times.

IV. EXPERIMENTAL METHOD

In order to evaluate the system, we quantified generaliza-
tion ability with respect to test session, subject and motion.
These cases represent small, medium and large variations
in the presented inputs. We used several training data sets
to quantify not only generalization ability but also how
performance was affected by training on data from a mixture
of sessions compared with a single session.1

We used motion analysis data from 5 test sessions (A-
E), as described in Table II, each containing 7 repetitions of
the described motion. The motions were designed according
to an experimental protocol such that the position of the
patient and the endpoint of the reach were fixed between
test sessions for repeatability analysis. In each experiment
the neural network was trained on several datasets, each
consisting of six motions. Each training set contained either
six motions from one test session, three motions each from
two test sessions, or two motions each from three test
sessions. Each test set consisted of one motion from each
relevant session.

To quantify accuracy and generalization ability, we em-
ployed two error metrics: the mean squared error (‘MSE’)
directly compares algorithm output with the desired stimu-
lation and therefore does not take into account the different
penalties applied to various misclassifications; the average
loss (‘Loss’) over the test motion addresses this shortcoming
by penalizing all misclassifications according to the loss
matrix.

1This has practical importance in order to determine whether training
a bespoke network presents a significant benefit over a “one-size-fits-all”
system that can be used in off-the-shelf operation.

TABLE II

DATA SETS.

Dataset Patient Day Motion
A 1 1 Lift glass to mouth, palm downa

B 1 2 Lift glass to mouth, palm down
C 2 3 Lift glass to mouth, palm down
D 1 1 Lift glass off table, palm sideways
E 1 1 Move plate laterally, palm up

aDenotes the orientation of the palm at the start of the motion.

Since the neural network was initialized with random
weights and the error function typically has many local min-
ima, we trained every network forty times and computed the
mean and standard deviation of the error. This averaged out
fluctuations between tests as a result of random initialization.

A. Generalization over session, subject and motion

In the first of three experiments, we trained on data sets
A and B, corresponding to the same subject performing the
same motion on different days, in order to identify whether
the algorithm is sensitive to small changes in motion as a
result of day-to-day variation (due to fatigue, spasticity etc.).

A second test investigated the robustness of the algorithm
to medium variations in the motion patterns. We trained on
data sets A and C, taken from different subjects performing
the same motion. Due to the relative rigidity of the experi-
mental protocol, the motion patterns are similar with some
variation due to the “style” of the subject.

Finally, we investigated whether the neural network could
generalize to novel movements. This challenging case was
trained on data sets A, D and E, providing signals from
the same subject performing different motions. Note that the
motions in data sets A and D are relatively similar (lifting
a glass into the air from a tabletop) whereas the motion in
data set E is very different (moving a plate laterally).

V. RESULTS

A. Generalization with respect to session

Table III shows that there was little difference in MSE
between the two test days. This is not unexpected since the
data is from the same subject performing the same motion.
Of course, this error is likely to vary inversely with respect
to how repeatably the subject can perform a given motion.

TABLE III

GENERALIZATION OVER TEST SESSION.

Test Motion
Training Set A B

A(6a)
MSE 0.129 (0.020)b 0.129 (0.013)
Loss 0.100 (0.018) 0.104 (0.010)

B(6)
MSE 0.127 (0.087) 0.117 (0.083)
Loss 0.113 (0.066) 0.098 (0.061)

A(3),B(3)
MSE 0.125 (0.017) 0.120 (0.016)
Loss 0.105 (0.021) 0.102 (0.016)

aNumber of motions used from dataset
bMean (Std Dev)
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B. Generalization with respect to subject

Compared to the previous results, Table IV shows that the
algorithm did not generalize as well between patients due
to the increased variation in motion. However, we note that
errors were generally higher for motion C, suggesting that
repeatability is lower for this patient and motion.

TABLE IV

GENERALIZATION OVER SUBJECT.

Test Motion
Training Set A C

A(6)
MSE 0.129 (0.020) 0.193 (0.016)
Loss 0.100 (0.018) 0.184 (0.014)

C(6)
MSE 0.111 (0.021) 0.165 (0.047)
Loss 0.151 (0.017) 0.139 (0.022)

A(3),C(3)
MSE 0.109 (0.009) 0.172 (0.007)
Loss 0.101 (0.015) 0.166 (0.011)

C. Generalization with respect to motion

From the results shown in Table V, we see that the neural
network generalized relatively well between the similar
motions (data sets A and D) but did not generalize well
for the dissimilar motion (data set E). This is indicated
by the large errors present in the final column, with the
exception of when the network was trained on data solely
from that motion. Furthermore, as the training set became
more general the average error increased for all motions,
suggesting that a different neural network may be required
for highly dissimilar motions.

TABLE V

GENERALIZATION OVER MOTION.

Test Motion
Training Set A D E

A(6)
MSE 0.129 (0.020) 0.174 (0.040) 0.274 (0.033)
Loss 0.100 (0.018) 0.149 (0.025) 0.246 (0.024)

D(6)
MSE 0.123 (0.041) 0.187 (0.035) 0.282 (0.032)
Loss 0.127 (0.038) 0.143 (0.031) 0.289 (0.024)

E(6)
MSE 0.255 (0.012) 0.366 (0.021) 0.164 (0.023)
Loss 0.230 (0.005) 0.265 (0.009) 0.093 (0.020)

A(3),D(3)
MSE 0.112 (0.032) 0.121 (0.052) 0.262 (0.023)
Loss 0.093 (0.025) 0.122 (0.032) 0.243 (0.022)

A(3),E(3)
MSE 0.188 (0.047) 0.261 (0.056) 0.247 (0.051)
Loss 0.135 (0.026) 0.204 (0.035) 0.166 (0.047)

D(3),E(3)
MSE 0.182 (0.124) 0.240 (0.097) 0.250 (0.116)
Loss 0.195 (0.080) 0.217 (0.057) 0.161 (0.079)

A(2),D(2),E(2)
MSE 0.132 (0.041) 0.165 (0.066) 0.261 (0.036)
Loss 0.108 (0.031) 0.154 (0.042) 0.203 (0.045)

D. Discussion

We make a number of observations from these results:
the ‘MSE’ and ‘Loss’ error metrics sometimes disagree over
which which motion was best recognized although the ‘Loss’
metric tends to agree more closely with our intuition; motion
A was apparently the easiest to recognize, as evidenced by
consistently lower errors in most cases (where data from
motion A was included during training); performance typi-
cally deteriorated when trained on multiple subjects although
in some cases error decreased when trained on mixed data,
possibly as a result of improved generalization.

VI. CONCLUSION

We have presented an application of Machine Learning for
upper limb FES triggering, based on forearm acceleration.
Stimulation was selected in such a way as to minimize risk
and the correct stimulation was observed for 80-90% of the
motion cycle. A neural network, trained on various datasets,
generalized well over test sessions and (to a lesser extent)
patients. Generalization over motion was demonstrated for
similar motions and less so for dissimilar ones.

Potential developments of the system include: incorpo-
rating temporal smoothness using tools such as a Finite
State Machine; employing the loss matrix during training
to increase accuracy in critical regions; optimizing network
structure using genetic algorithms [12]; investigating other
Machine Learning methods (e.g. non-parametric methods);
employing alternative features (e.g. wavelet coefficients).
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