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Abstract— The discovery of repetitive patterns is a funda-
mental problem in bioinformatics. It remains a challenging
open problem because most of the existing methods, such
as using annotated repeat database and extracting pairs of
maximum repeated regions, can not give a correct definition
incorporating both the length and frequency factors of the
repetitive patterns. There is an algorithm considering both
the pattern length and frequency. However, it could only find
the simple “elementary” repeats and is not able to reveal the
complex structure of the repetitive patterns. Furthermore, its
time complexity O(n2f), where n is the length of the sequence,
f is the minimum frequency requirement, could be still too
high for long DNA sequences. In this paper, we propose a novel
algorithm using suffix tree to reveal the complex structure of
the repetitive patterns in DNA sequences. We show that our
algorithm achieves an O(n2/f2) time complexity.
Keywords: repetitive patterns, suffix tree, elementary re-
peats, complex structure.

I. INTRODUCTION

It has been shown that a remarkable fraction of the
genome of complex organisms is repetitive patterns. Lewin
[1] showed that more than 50% of the human genome
consists of repetitive patterns. Although these repeats are
normally regarded as “junk” regions, which do not contribute
to the coding for proteins, they may be associated with
various genetic diseases. Zheng and Lonardi [2] showed
that quite a few human genetic diseases, such as fragile
X syndrome, myotonic dystrophy and Friedreich’s ataxia
are related to the irregularities in the length of repeats.
More cases can be found in [2]. Therefore the functions
of these repetitive patterns are attracting more and more
attentions and discovery of these repetitive patterns is of great
importance.

The discovery of repetitive patterns is one of the fun-
damental problems in bioinformatics. There are two major
methods to solve this problem. REPEATMASKER [3] uses
an annotated library of repeats. This approach is not able
to handle new genomes whose libraries of repeats are un-
available. The other method is to extract all pairs of similar
repeated regions with maximal length [4], [5], [6]. They
only look for pairs of repeats. However, in real biological
sequences, the repetitive patterns often occur more than
twice. It is more reasonable to incorporate frequencies of
repeats.

Upon recognition of the importance of frequencies of
repeats, several works [7], [8] were done to incorporate
both the length and frequency factors into the definition of
repetitive patterns. But their methods are complicated and
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difficult to analyze. Zheng and Lonardi [2] proposed a novel
definition of repeats called “elementary repeats”, which are
the basic building blocks of longer repeats (called complex
repetitive patterns). They also designed neat algorithms to
find these elementary repeats. However, their algorithms are
not able to retrieve the structures of the complex repetitive
patterns. For example, their algorithms can not reveal which
elementary block is contained in which complex repetitive
pattern. Furthermore, it’s time complexity O(n2f), where n
is the length of the sequence, f is the minimum frequency
requirement, could be still prohibitive for DNA sequences as
long as hundreds of thousands of bps, which is quite common
for genome sequences.

In this paper, based on the definition of elementary re-
peats from Zheng and Lonardi [2], we propose an efficient
algorithm to find the elementary repeats. By first finding
all the possible candidates for the elementary repeats, then
pruning those false positive candidates, we can achieve a
more efficient algorithm, with time complexity O(n2/f2),
than the algorithm from Zheng and Lonardi [2]. We then
extend our algorithm to reveal the structures of all complex
repetitive patterns.

The outline of this paper is as follows: In Section II we
summarize related work to the problem of finding repetitive
patterns and we propose a novel algorithm for this problem
in section III. We include our final remarks in Section IV.

II. RELATED WORK

Lots of work has been done on the problem of discovering
repetitive patterns. However, it remains a challenging prob-
lem because most of the existing methods, such as annotated
repeat database ([3]) and pairs of maximum repeated regions
([4], [5], [6]), can not give a correct definition incorporating
both the length and frequency of the repetitive pattern.

In order to design a clean algorithm to discover repetitive
patterns, a biological meaningful definition of repeats is
necessary. Although this is not an easy task, some recent
works have tried to take into account both the length and
frequency factors of repeats ([7], [8]). However, the multiple
sequence alignment strategy in the work by Bao and Eddy
[7] and the A-Bruijin graph used by Pevzner et. al [8] are
complicated and not easy to analyze.

Zheng and Lonardi [2] gave a novel definition of repeats,
called elementary repeats, to incorporate both the length
and frequency factors of repetitive patterns. Given the length
threshold l and the frequency threshold f , they defined an
elementary repeat of a sequence S as a substring A of
maximal length greater than l, occurring at least f times
(A is called notrivial). The frequency of every substring B
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of A whose length is greater than l should be the same as
the frequency of A. Every copy of B should occur with the
same shift s in every copy of A (B is called a subrepeat
of A). Therefor the elementary repeats are actually the
basic building blocks of the sequence. The containing of
these elementary repeats in a long repeat results in complex
structure of repetitive patterns. Zheng and Lonardi claimed
that the discovery of the internal components of complex
repeats can be helpful to infer the role of repeats. The
conservation of these basic blocks could also reveal the
evolutionary relationships among different types of repeats.
Therefore we should first find these elementary repeats. If
the elementary repeats are identical, we call them exact
elementary repeats. If some differences among them are
allowed, we call them approximate elementary repeats. Our
algorithms are based on the definition of elementary repeats
by Zheng and Lonardi [2].

The algorithm of Zheng and Lonardi uses a bottom-up
strategy. They first use the linear-time algorithm by Gusfield
[4] to build a suffix tree. Next they find the frequencies
for all n − l + 1 seeds whose lengthes are l (These seeds
are called l-mers seeds). These seeds start at positions
from S[1] to S[n − l + 1], respectively. Then it merges
the successive seeds with equal frequencies into intervals.
After this step, it extracts all the intervals consists of seeds
with equal frequencies greater than f (multiple copies of
intervals will be included). Then for each interval, they check
the corresponding occurrences of every pair of successive
seeds, using the suffix tree. If every pair of successive seeds
in this interval is also successive in all other copies, this
interval is elementary repeat according to Lemma 5 in [2]
( A nontrivial substring A, which occurs at least twice, is
an exact elementary repeat if and only if it is a maximal
nontrivial substring such that all its l-mers are as frequent
as A itself ). Otherwise this interval is divided into two
pieces of new intervals to be checked again. Checking all
the occurrences of a seed takes O(n) time. The comparison
of the relative positions for every pair of two successive
seeds takes O(f) time. Since each pair of successive seeds
is checked at most once, and there are O(n) pairs of such
seeds, the time complexity of their algorithm is O(n2f).

The above algorithm is not efficient. First, it needs to
check all n− l + 1 seeds. However, most of them would be
only one part of some elementary repeats, especially when
the average length of elementary repeats is much greater than
l, which is often the case. Second, it needs to check all copies
of each interval. But we actually only need to check one copy
of each interval. What’s more, the algorithm can not reveal
the structure for the complex repetitive patterns.

We first try to improve the algorithm for discovering exact
elementary repeats. Our method extracts exactly one copy of
possible candidates of elementary repeats. And then we try
to prune the false positive candidates efficiently. We show
our algorithm achieves a time complexity of O(n2/f2) and
in real applications it is even much faster. We next extend
our algorithm to find the complex repetitive patterns. Our
algorithm can report all the repetitive patterns which are

Algorithm Suffix-ExactRepeat
Input: string S of length n, seed length

threshold l, seed frequency threshold f

Output: the set R of all nontrivial exact
elementary repeats in S

1. T,R ← NULL (T is the candidate set)
2. traverse the suffix tree with breadth first search {
3. if the node C is nontrivial and left diverse {
4. T ← T + {c} (c is the substring

associated with node C)
5. f(c) ← the frequency for substring c

6. block the search in the subtree of C

7. }
8. }
9. sort the ci ∈ T into c1, c2, ..., c|T | such that

l1 ≤ l2 ≤ ... ≤ l|T | (li is the length of substring ci)
10. R ← R + {c1}
11. for i = 2 to |T | (candidate elementary repeats set)
12. build a suffix tree Trci for Tci

13. for j = 1 to |R| (true elementary repeats set)
14. if for all j with f(Rcj )>f(Tci ),

Suffix(Trci , Rcj )=false
15. R ← R + {ci}
16. if for some j, f(Rcj )>f(Tci ), Suffix(Trci , Rcj )=true
17. report Rcj is a no-subrepeat of Tci

18. remove Rcj from Tci

19. check the remaining substrings of Tci

20. If they are of lengths greater than l and of
frequencies greater than f

21. add them into T , at position i, in ascending
order of their lengths

22. Suffix(Tree, S) is a sub-procedure to check whether
S is a substring in the suffix tree Tree

23. return R as the set of exact elementary repeats

Fig. 1. Algorithm Suffix-ExactRepeat to find the exact elementary repeats
of a given string

nontrivial and what elementary repeats they contain, with the
same time complexity O(n2/f2). The biological meaning of
these repetitive patterns will be left to the biologists.
III. NOVEL ALGORITHM FOR DISCOVERING REPETITIVE

PATTERNS
A. Discovery of Elementary Repeats

Due to the space limits, we only describe the algorithm of
discovering exact elementary repeats. The idea can be easily
extended to the cases of approximate elementary repeats. We
first show our algorithm in pseuodocode in Figure 1.

In line 2 to 8 of our algorithm, we find possible candidates
of elementary repeats, then we filter those candidates which
are not true elementary repeats. The extraction of candidates
can be done in O(n) time via suffix tree. Since an internal
node in suffix tree must have at least two children, the
frequency of a substring associated along the paths from
the root to this node (we call substring associated with this
node) is higher than the frequency of a substring associated
with any child node of this node. Therefore, the substring

3475



associated with the child node can not be an elementary
repeat because at least it has a nontrivial prefix occurring
more times than itself. We call a node in the suffix tree
nontrivial if there is a nontrivial substring associated with
it. Therefore we can find the set of all possible candidates of
elementary repeats, say T , by checking each internal node
of the suffix tree at most once. If a node is nontrivial, we
simply ignore its subtree since its frequency is higher than
the frequencies of all its children. And also the left diverse
nodes strategy [4] ( A node v is called left diverse if at
least two leaves in v’s subtree have different left characters
) excludes from the candidate set all the nontrivial suffixes
of a candidate. Checking whether a node is left diverse can
be done simultaneously as we check the frequency of the
substring associated with this node.

A trivial way of pruning false positive elementary repeats
is for each i ∈ T , we check i against all other candidates
in T . If there is a candidate j being a substring of i but not
a subrepeat of i, namely every copy of i contains a copy
of j with the same shift, but j has more copies than i in
S, then i can not be an elementary repeat. We call j a no-
subrepeat of i. If there is no other candidate j being a no-
subrepeat of i, we can safely make the conclusion that i is
an elementary repeat. This trivial way would take O(|T |2)
comparisons. We can improve it based on the observation
that if j is a no-subrepeat of i then j must be a substring
of i and the length of j must be less than i. Therefore we
can sort these candidates in ascending order of their lengths.
A candidate only needs to be proposed to those candidates
with shorter lengths. Then we check these candidates in this
ascending order and use a set R to store the currently found
true elementary repeats. For each candidate we just need to
check whether a candidate i has no-subrepeats in the set R.
If yes, then it can not be a true elementary repeat and can
be pruned, if no, then it is a new true elementary repeat
and is added into R. In order to guarantee the correctness
of this algorithm, when a candidate is judged as a false
positive elementary repeat and it contains a no-subrepeat, we
continue to check the remaining substrings of this candidate
after removing the no-subrepeat from it, against the set R.
Since their lengths are shorter than the current candidate, we
just need to propose them to the current R. If they meet the
criterions of elementary repeats, we add them into R. If they
contain other no-subrepeats, we continue the process until
either the length or the frequency criterion is not satisfied.
We don’t need to worry about the case that the remaining
substrings may be no-subrepeats of some element in R. It can
not happen since if it is the case this substring should have
already been extracted as a candidate and have been included
in the set T individually. The number of comparisons now is
reduced to O(|T |e), where e is the number of true elementary
repeats and e ≤ |T |. This is shown in line 11-22 in Figure
1.

Note that in line 9, we sort each i ∈ T in ascending order
of their lengths. This step is necessary to guarantee that each
candidate will only be proposed to those currently found true
elementary repeats. The first candidate after sorting must be

an elementary repeat since there is no other candidate shorter
than it. In line 10 we add the first candidate to the set of
currently found elementary repeats. Then a new candidate
would be compared with only those shorter candidates which
have been checked to be true elementary repeats.

In line 12, for each candidate string, we build a suffix
tree. When we compare a candidate with an elementary
repeat, we first check their frequencies. If the frequency of
the elementary repeat is less than that of the candidate, we
know immediately that the elementary repeat can not be a
no-subrepeat of the candidate and we can then propose this
candidate to the next elementary repeat. Otherwise we check
whether the elementary repeat meets the criterion of a no-
subrepeat (being a substring of the candidate but has higher
frequency than the candidate does). If yes, the elementary
repeat is a no-subrepeat of the candidate. We can prune the
candidate and check the next candidate. The time complexity
to check one candidate against all true elementary repeats is
O(el′), using suffix tree, where l′ is the average length of
the candidate repeats.

Therefore the time complexity of our algorithm is O(ecl′),
where e is the number of elementary repeats, c is the number
of candidates we found, l′ is the average length of the
candidate repeats, which is also the average length of the
elementary repeats. However, we know that in the worst
case, e = n/(l′f) (we assume the elementary repeats are
not overlapped with each other). And we could have at most
n/f candidates since each of them occur at least f times
and we only store one copy of them. Then we have the
time complexity of our algorithm as O(ecl′) = O( n

l′f
n
f l′) =

O(n2/f2) instead of O(n2f) of the algorithm in [2].
We illustrate our algorithm by a simple example. Given

the string xabxaba, we set l = 1 and f = 2. By our Suffix-
ExactRepeat algorithm, the candidates are xab and a. Note
that ab and b are nontrivial suffix of xab. They are pruned
since they are not left diverse, namely the left symbols of
every copy of ab are the same, x, and the left symbols of
every copy of b are the same, a. On the contrary, a is a
candidate since it is left diverse. a has two different left
words x and b. xab is also left diverse since it has two
different left words # and b (we add # at the beginning
of the string and $ at the end of the string). After we find
all the candidates, we sort them according to their lengths.
Then we first add a into the current found elementary repeat
set. Then we propose xab to a. a is a substring of xab,
however its frequency is higher than xab. Therefore a is a
no-subrepeat of xab and xab is not an elementary repeat.
Next we remove a from xab and we get x and b. Both of
them meet the criterion of elementary repeat and they don’t
have any no-subrepeat. The elementary repeats are then x, a
and b.

Gusfield [4] describes how to use suffix tree to find all
maximal repeats in linear time. However, his definition of
maximal repeats is different from ours here. According to
him, if every copy of a substring is contained in another
longer substring with the same shift, this substring can not be
maximal repeat. Otherwise it is a maximal repeat. Therefore,
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in the above example, ab and b can not be maximal repeats
since they are all contained in xab with the same shift. a is a
maximal repeat since it has one copy not contained by xab.
xab is also a maximal repeat according to the definition by
Gusfield. However, according to our definition of elementary
repeat, it is not an elementary repeat since it has a no-
subrepeat as a.

As we showed above, the time complexity of our Suffix-
ExactRepeat algorithm is O(n2/f2). However, in real appli-
cations, it is usually much more efficient. This is because in
the real applications, e is usually much less than n/(l′f), the
number of candidates is also much less than n/f . Another
important factor is the sorting strategy in line 9 and the
frequency comparison strategy in line 14 of Figure 1 makes
the pruning process much more efficient than our worst
case scenario. For example, in the simulated experiments by
Zheng and Lonardi [2], they have the parameters in average
cases as n = 20000, e = 10, f = 20, l′ = 50. Clearly the
O(f3) factor will make a big difference between the time
complexities of our algorithm and the algorithm of Zheng
and Lonardi.
B. Discovery of Complex Repeats

Another advantage of our Suffix-ExactRepeat algorithm
is that it is easy to be extended to a more general case: to
reveal the structure of complex repetitive patterns. We show
the detail of our Suffix-ExactComplexRepeat algorithm in
pseuodocode in Figure 2.

When we traverse the suffix tree, we should traverse
through all the internal nodes to find all the nontrivial
maximal repeats and store them in set T . However, we’d
like to move those candidates who do not have nontrivial
prefixes into set T ′. This is done in line 10 to 12. We then
apply the Suffix-ExactRepeat algorithm on candidates in T ′

to extract the set of true elementary repeats R. Next we
propose the remaining candidates to R to identify all the
no-subrepeats in them. In line 14-18, we need to propose
each candidate in T − T ′ to all the elementary repeats in R
and report this candidate contains which elementary repeats
as no-subrepeats. For example, for the string xabxaba, the
algorithm Suffix-ExactComplexRepeat would first find the
elementary repeats x, a, b and then report that xab contains
x, a, b as no-subrepeats.

Surprisingly the time complexity of this algorithm is still
O(n2/f2) because the procedure is exactly the same as
the Suffix-ExactRepeat algorithm. However, in real appli-
cations, obviously it takes much more time than the Suffix-
ExactRepeat algorithm does since its candidate set T may be
much larger and each candidate in T−T ′ has to be compared
with all elementary repeats.

IV. CONCLUSION AND FUTURE WORK

In this paper, we proposed an efficient algorithm using
suffix tree to solve one of the fundamental problems in
bioinformatics: discovery of the complex repetitive patterns
of DNA sequences. We try to incorporate the length and
frequency factors into the process. Because of limit space,
we only describe our algorithm for finding exact elementary

Algorithm Suffix-ExactComplexRepeat
Input: string S of length n, seed length threshold l, seed frequency
threshold f

Output: the set R of all nontrivial exact elementary repeats in S
and reports of complex repetitive patterns
1. T,R ← NULL
2. traverse the suffix tree with breadth first search {
3. if the node C is nontrivial and left diverse {
4. T ← T + {c} (c is the substring

associated with node C)
5. freq(c) ← the frequency for substring c

6. lc ← the length of substring c

7. mark its subtree as non-elementary
8. }
9. }
10. for c ∈ T

11. if c is unmarked
12. T ′ ← T ′ + {c}
13. apply the Suffix-ExactRepeat algorithm (line 9 to 22)

on T ′ and return true elementary set as R

14. for i = 1 to |T − T ′|
15. build a suffix tree Trci for (T − T ′)ci

16. for j = 1 to |R|
17. report elementary repeat Rcj as a no-subrepeat

of (T − T ′)ci if Suffix(Trci , Rcj )=true
and f(Rcj )>f((T − T ′)ci )

18. Suffix(Tree, S) is a sub-procedure to check whether
S is a substring in the suffix tree Tree

Fig. 2. Algorithm Suffix-ExactComplexRepeat to find the exact elementary
repeats of a given string

repeats and the complex repetitive pattern containing these
exact elementary repeats. However, similar ideas can be
extended to the cases of approximate elementary repeats.
We’d like to discuss algorithms for approximate elementary
repeats in our future work.
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