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Abstract— The task of Electrocardiographic Imaging is an ill-
posed inverse problem, requiring regularization. However, it has
special features, firstly because it is a “non-stationary" inverse
problem, and secondly because the inherent dynamical variety
(e.g., epicardial breakthroughs, arrhythmias, ischemic changes)
may preclude a fruitful nontivial process model. Importantly,
its structure places it in the category of “partial inverse
problems" - a theory that arises from this setting. Surprising
features of the resulting regularization methodology include the
ability to fashion nontrivial regularization matrices in part (and
sometimes entirely) from the data. There is evidence that these
theoretical results can have significant practical benefits.

I. INTRODUCTION

It has long been recognized that Electrocardiographic
Imaging is an ill-posed inverse problem, and that regulariza-
tion is required. It is also a “non-stationary" inverse problem
[7], i.e., a time series of distinct inverse problems. The
latter realization suggests imposition of a Kalman smoother
format, particularly as individual regularization of each con-
stituent inverse problem independently leads to undesirable
noise in the solution time series. Unfortunately, there is
no evident nontrivial process model for this problem (e.g.,
depolarization on the epicardium proceeds from numerous
epicardial breakthroughs “appearing out of nowhere", with
markedly varying local wavefront propagation depending on
the proximity to a breakthough, local relative curvature of
depolarization wavefront and epicardial surface, ischemia,
arrhythmias, etc.). Random walk Kalman (the default) simply
corresponds to incorporation of a temporal second-order
Tikhonov regularization operator [9]. Other schemes that
address the time domain, such as Joint Regularization [9],
have substantially ad hoc features (noted in [3]).

However, a re-evaluation of the problem in light of the
structural differences of the unknown compared to that of
an “ordinary" inverse problem, leads to a distinct approach,
which forms the basis of a more general theory of “partial
inverse problems". Application of elementary consequences
of this theory appears to lead to significant improvements
in Electrocardiographic Imaging solution quality [8], but we
will here concentrate on the general theory - and its favored
nature in principle, rather than in specific applications.

II. PARTIAL INVERSE PROBLEMS

In order to make the generalization to higher dimensions
obvious and simplify derivations, we use tensor indices
notation (and the Einstein summation convention).
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A linear ordinary inverse problem, discretized for numer-
ical analysis, and with an additive noise model, takes the
form

Y α = Fα
μXμ + Nα, (1)

where Y α, Xμ, Nα are data, source, and noise, respectively,
and Fα

μ represents the transfer matrix. From a Bayesian
standpoint, Y α, Xμ, and Nα represent random vectors.
Assuming these to be zero mean jointly Gaussian, with
independent signal and noise, the solution is given by the
autocovariance of random m-vector Xμ, since the posterior
distribution (and resulting formulae for the minimum-mean-
square-error estimate and it’s associated covariance) then
follow from a (presumed given) noise model and data re-
alization of Y α. The solution set Vm of zero mean Gaussian
random m-vectors (defined by their m × m positive definite
autocovariance matrices) is a homogeneous space, since the
orbit of any member of this set under the action of the general
linear group encompasses Vm. Accordingly, cross-covariance
matrices between any two members are defined, so that Vm

is a vector space (i.e., given (X1)μ, (X2)μ ∈ Vm, and scalars
a, b, we have (aX1)μ + (bX2)μ ∈ Vm since the latter has
zero mean, and its autocovariance can be supplied).

The above directly generalizes to the case of a discretized
linear inverse problem having two (or more) variables in the
unknown (and an additive noise model). In the two variable
setting, (1) is replaced by

Y αβ = Fαβ
μνXμν + Nαβ =

∑
i

(Ai)α
μ(Bi) β

ν Xμν + Nαβ ,

(2)
where N represents additive noise (we reserve lower case
Roman letter subscripts for distinguishing between different
tensors, and lower case Greek letter subscripts and super-
scripts for tensor component indices). The second equality
in (2) follows from the ability to express any fourth rank
tensor as a linear combination of tensor products of rank 2
tensors. The unknown is now a random second rank tensor
Xμν with indices μ, ν running from 1 to m and 1 to n,
respectively. So, for a discretized partial inverse problem in
two variables, the unknown is associated with a member of
the tensor product of spaces Vm ⊗ Vn. Each member of
Vm ⊗ Vn is a finite linear combination of tensor products
of members of Vm with members of Vn. Thus, we can write
Xμν =

∑
i(si)μ(ti)ν , with (si)μ ∈ Vm and (ti)ν ∈ Vn.

We assume that the components of members of Vm are
jointly Gaussian with the components of members of Vn.
Since the members of Vm ⊗ Vn have zero mean, it follows
that for sμ ∈ Vm and tν ∈ Vn, E [sμtν ] = 0, so that sμ
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is independent of tν . If we have no constraints regarding
the entanglement of the two variables, all contractions of
members of Vm ⊗ Vn with respect to their second index
must lead to random vectors that are proportional to each
other (due to “insufficient knowledge" [6], manipulations
with respect to the second variable cannot influence utilized
statistics related to the first variable). That is, there is an
sμ ∈ Vm such that for any random n-covector Rν ∈ V∗

n,

RνXμν =
∑

i

(
Rν(ti)ν

)
(si)μ = asμ,

where a is a scalar dependent on Rν . This is only possible
if either (ti)ν ∝ (tj)ν for all i, j, or (si)μ ∝ (sj)μ for all
i, j. In either case, this implies the existence of sμ ∈ Vm

and tν ∈ Vn such that Xμν = sμtν . Thus,

E [XγσXγσ]E [XμνXξη]

= E [sγtσsγtσ]E [sμtνsξtη]
= (E [sγsγ ]E [tσtσ])(E [sμsξ]E [tνtη])
= (E [sγsγ ]E [tνtη])(E [sμsξ]E [tσtσ])
= E [XγνXγη]E [XμσXξσ], (3)

where the second and fourth equalities above follow from
the previously noted independence of members of Vm with
respect to members of Vn. Equation (3) has two important
immediate consequences.

1) The autocovariance of Xμν is

E [XμνXξη] =
E [XμσXξσ]E [XγνXγη]

E [XωρXωρ]
, (4)

2) Non-random tensors effecting a contraction of an au-
tocovariance simply act as scale factors,

E [P ξ
λ Qλ

μXμνXξη]

=
(

P ξ
λ Qλ

μ

E [XμσXξσ]
E [XωρXωρ]

)
E [XγνXγη]. (5)

Note that the parenthetical expression on the right-
hand-side above is a scalar. Also note that an analogous
equation follows if the contraction is with respect to
ν, η rather than μ, ξ.

Equations (4) and (5) apply to regularization of problems
such as defined by (2).

So-called non-stationary inverse problems [7] of the form
yi = Axi +ei, i = 1, 2, . . . , n, can be written as Y = AX +
N where the i-th columns of matrices Y, X, N are yi, xi, ei

respectively. Expressing this as Y αβ = Aα
μδβ

ν Xμν + Nαβ ,
we see that we are dealing with the simplest nontrivial
example of (2), i.e., the case in which

Fαβ
μν = Aα

μδβ
ν . (6)

Setting P ′ = Q = A in (5) leads to [2]

E [XγνXγβ ]
E [XωρXωρ]

=
E [Y ανYαβ ] − E [NανNαβ ]
E [Y ωρYωρ] − E [NωρNωρ]

. (7)

In this case, we now we see that the problem of estimating X
can be treated by specifying the inverse of the regularization

matrix as (4), where E [XμσXξσ] is chosen (up to a scalar
magnitude) to be the autocovariance of xi (the inverse of the
spatial regularization matrix), with the remaining term in (4)
supplied by (7). In utilizing (7), E [Y ανYαβ ] is taken to be
the observed (data derived) realization Y ′Y (since Y ′Y =
E [Y ′Y ]+O(ε2), assuming E [N ′N ] = O(ε2)). In actuality, a
multiple regularization parameter approach is preferable [2].

More generally, (2) and (5) imply that

E [Y αβYαβ′ ]

=

⎧⎨
⎩

∑
i,j

(
(Ai)

ξ
λ (Aj)λ

μ

E [XμσXξσ]
E [XωρXωρ]

)
(Bi)

η
β′(Bj) β

ν

⎫⎬
⎭

·E [XγνXγη] + E [NαβNαβ′ ]. (8)

If there is a k such that Bk is well conditioned, then the
inverse of the term in braces on the right-hand-side above
is stable, and thus E [XγνXγη] (i.e., the second factor in
the numerator on the right-hand-side of (4)) can be stably
estimated (given values for the scalars embodied by the large
parenthetical expression inside the summation on the right-
hand-side of (8)). If there is also a r such that Ar is well
conditioned, then an expression analogous (8) can be used
to estimate E [XμσXξσ], i.e.,

E [Y αβYα′β ]

=

⎧⎨
⎩

∑
i,j

(
(Bi)λ

ν(Bj)
η

λ

E [XγνXγη]
E [XωρXωρ]

)
(Ai)α

μ(Aj)
ξ

α′

⎫⎬
⎭

·E [XμσXξσ] + E [NαβNα′β ]. (9)

In this case, the entire regularization matrix can be estimated
via a maximum likelihood calculation (an example will be
provided in Section III). It is important to note that this stable
approach, which we call the “Adaptive Isotropy Method"
(AIM), is desirable only so long as the coupled equations
are not subject to excessive noise.

If all the Ai and Bi are ill conditioned, one can regularize
(8) and (9) to obtain the requisite regularizing functional.
However, one has now lost the previous advantage in that a
hyperprior must now be imposed.

Note that the simultaneous equations (8) and (9) are
coupled nonlinearly via the scalars appearing as the ex-
pression inside the large parentheses inside the respective
summations on their right-hand-sides. The proper way to
deal with this nonlinearity is one of several implementation
questions considered in the next section.

III. ALGORITHMIC FEATURES

Though a tensorial decomposition of the operator in
(2) might indicate that only “one dimensional" algorithmic
methodology is applicable, if any of the component simple
tensors of the decomposition have a well conditioned factor,
then Section II indicates that a quite different algorithm is
desirable - one which has no analogue in the theory of ordi-
nary inverse problems. However, along with this potentially
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more accurate approach, come a number of related questions.
To introduce these, we will deal with an operator having the
following decomposition,

Fαβ
μν = Aα

μδβ
ν + δα

μB β
ν , (10)

where A and B are ill-conditioned (treatment of the simpler
case Fαβ

μν = Aα
μδβ

ν is the subject of [2]). Equation (10)
corresponds to problems of the form Y = AX + XB + N .
We will take the “unknown" X to consist of a couple of
closely spaced sharp peaks, on a subtle damped wave-like
background. A, B will be taken to be Gaussian-shaped con-
volution matrices. However, similar results are also obtained
with quite different choices of A, B.

The following phenomena will be observed:

1) Consistent with expectations, the new methodology is
capable of greater accuracy than zero-order Tikhonov
regularization, assuming computation of the regular-
ization tensor via (8) and (9) is not overwhelmed by
noise,

2) The Discrete Picard Condition [4] is violated,
3) It is necessary to use a GSVD-based algorithm,
4) Despite the apparent nonlinear coupling of the second

kind equations (8), (9) arising in the regularization
tensor computation, the problem can be effectively
treated linearly in practice.

We will consider these in reverse order.

A. The problem of regularization tensor computation is lin-
ear in practice

The relevant equations for computation of the regulariza-
tion matrix are (8) and (9). The scalars within the summa-
tion in each equation apparently couple the simultaneous
equations nonlinearly. In (8) (respectively, (9)), these scalars
are the Frobenius product of (Ai)

ξ
λ (Aj)λ

μ (respectively,
(Bi)λ

ν(Bj)
η

λ ) with a unit trace version of E [XμσXξσ]
(respectively, E [XγνXγη]). Rather than devising a scheme
to directly address this nonlinear problem, one might instead
choose the scalars as resulting from Frobenius products
with unit trace versions of the identity matrix (instead of
E [XμσXξσ] or E [XγνXγη]). Thus, in the context of (10),
the scalars are supplied by the traces of A′A, A, B′B, and
B. Figure 1 demonstrates that this choice performs quite well
compared with the case where the scalars are computed from
actual knowledge of the unknown. Other obvious choices
substituting for E [XμσXξσ] or E [XγνXγη] (such as A′A or
B′B, respectively) also perform well for computation of the
scalars in question, and also typically lead to improvements
over standard Tikhonov regularization. Even a very naive
choice (e.g., where E [Y μσYξσ] substitutes for E [XμνXμ′ν ])
performs better than Tikhonov regularization in this particu-
lar example.

For the simpler problem Y = AX + N , it is known that
the choice of the “correct" term for the analogous scalar
does not give the solution of lowest relative error, when
compared with a multiple regularization parameter approach
[2]. Thus, it is possible one can do even better by some

10 20
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10 20
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10 20
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R.E., Tikhv

10 20

1
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Fig. 1. Above are four graphs of relative error (R.E.) versus regularization
parameter variation over 29 orders of magnitude. The unknown scalars
arising in (8) and (9) are calculated using choices derived from A, B (AIM-
A), or the identity matrices (AIM-I), as noted in the text. These give relative
error curves comparable to that obtained with use of the true scalars as
derived from knowledge of X (AIM-T). Each of these can perform better
than zero-order Tikhonov (Tikhv).

multiple regularization parameter selection scheme in the
treatment of (2), (10). This is an open question.

B. The algorithm should employ the generalized singular
value decomposition

As noted in [5], a GSVD analysis leads to the con-
clusion that the L-curve should be monotonic decreasing.
However, this is not necessarily observed in practice if
the GSVD components are not explicitly incorporated into
the regularization algorithm. In fact, for treatment of (2),
(10), rather curious solution instabilities can be noted as
the regularization parameter is varied, when the algorithm
does not explicitly utilize the GSVD components. Greater
accuracy is achieved with a GSVD-based algorithm (we use
a SVD-based algorithm to implement zero-order Tikhonov
regularization as well).

C. The Discrete Picard Condition appears to be violated

Singular value expansion of a function will not be con-
vergent if the Picard Condition is violated. This motivates
the Discrete Picard Condition [4]. If the generalized singular
values are arranged from smallest to largest (in conformance
with usual convention), this condition posits that a particular
regularization matrix will be useful only if the terminal por-
tion of the sequence increases more steeply than the terminal
portion of the sequence of corresponding Fourier components
of the data. Interestingly, this condition is apparently not
satisfied for AIM, as is clear from Figure 2.

This indicates the substantial difference between this reg-
ularization methodology and prior approaches.
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Fig. 2. Left: Superimposed graphs of logarithms of the operator singular
values versus logarithms of the absolute values of the associated data Fourier
coefficients, for the problem defined by (2) and (10) treated by zero-order
Tikhonov. Right: Superimposed graphs of the logarithms of the generalized
singular values versus logarithms of the absolute values of the associated
Fourier coefficients, for application of AIM to this problem. With AIM, the
Discrete Picard Condition is violated. On both the left and right above, the
plots having greater local point variability pertain to the Fourier coefficients.

D. Increased accuracy of AIM versus Tikhonov regulariza-
tion

Figure 3 shows results when A, B are Gaussian convo-
lution matrices (having different standard deviations). AIM
results in higher resolution and accuracy than Tikhonov
regularization. This advantage decreases with increases in
either noise power or variance of the convolving Gaussians.
Some of this diminution in efficacy is presumably due to
the effect of the noise on computation of the covariance
components obtained from treatment of the simultaneous
equations (8), (9).

IV. DISCUSSION

For an ill-posed problem, Fαβ
μν in (2) models a compact

operator. Thus, there cannot exist a particular k such that
Ak and Bk are both well conditioned (unless the resulting
term is effectively cancelled by other terms in the sum).
However, if there exist k, j with k �= j such that Ak

and Bj are well conditioned, then the entire regularizing
functional can be derived from the solution of a pair of what
are essentially discretized second kind Fredholm equations.
Since the solution estimate is equivalent to identification of
the regularizing functional and regularization parameter, the
solution follows from treatment of this nominally well posed
problem - without the need for prior imposition of what are
typically ad hoc regularization matrices. Even if only one
of the tensor factors on the right-hand-side of (2) is well
conditioned (e.g., there is a j such that Bj is a well condi-
tioned matrix), then a “well-posed" portion of the problem
can be factored out - which has the effect of supplying “half"
of the requisite regularization matrix in a stable fashion. It
is easy to supply examples for which substantially improved
solution estimates are thereby provided. The most elementary
cases of these impact important classes of applied inverse
problems, including much of what have been termed “non-
stationary" inverse problems [7]. However, the implications
are potentially more general.

While standard Tikhonov regularization can be thought of
as an a example of a parametric emperical Bayesian method
(the regularization parameter is computed from the data),

Tik

10

10

0.1

10

AIM

10

10

0.1

10

Fig. 3. In this example, the optimal AIM estimate is substantially superior
to that obtained with optimal zero-order Tikhonov. This effect is greatest
for cases where the unknown has dimension of at least moderate size (Xμ

ν

represents a 20 × 20 matrix in this example).

AIM seems to fit more in the category of a nonparametric
emperical Bayesian method.
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