
Medical Image Watermarking with Tamper Detection and Recovery
Jasni M Zain and Abdul R M Fauzi

Abstract- This paper discussed security of medical images and
reviewed some work done regarding them. A fragile
watermarking scheme was then proposed that could detect
tamper and subsequently recover the image. Our scheme
required a secret key and a public chaotic mixing algorithm to
embed and recover a tampered image. The scheme was also
resilient to VQ attack. The purposes were to verify the
integrity and authenticity of medical images. We used
800x600x8 bits ultrasound (US) greyscale images in our
experiment. We tested our algorithm for up to 50% tampered
block and obtained 100% recovery for spread-tampered block.

I. INTRODUCTION

Security of medical images, derived from strict ethics
and legislative rules, gives rights to the patient and duties to
the health professionals. This imposes three mandatory
characteristics: confidentiality, reliability and availability:
• Confidentiality means that only the entitled persons

have access to the images;
• Reliability which has two aspects; Integrity: the image

has not been modified by non-authorized person, and
authentication: a proof that the image belongs indeed to
the correct patient and is issued from the correct source;

• Availability is the ability of an image to be used by the
entitled persons in the normal conditions of access and
exercise.

Security risks of medical images can vary from random
errors occurring during transmission to lost or overwritten
segments in the network during exchanges in the intra- and
inter-hospital networks. One must also guarantee that the
header of the image file always matches that of the image
data. In addition to these unintentional modifications, one
can envision various malicious manipulations to replace or
modify parts of the image, called tampering [1].

The studies that are specifically directed to watermarking
of medical images are few. Anand and Niranjan [2]
proposed to embed an encrypted version of the Electronic
Patient Record (EPR) in the least significant bit (LSB) plane
of the image. Miaou et al [3] similarly proposed a LSB
technique where the host image authenticated the
transmission origin with an embedded message composed of
various patient data (e.g. ECG record), the diagnosis report
and the doctor’s seal. Macq and Dewey [4] proposed a
trusted header scheme by embedding the hash of the file
header of medical standard image in the image raw data.

Jasni M Zain is a lecturer at Faculty of Computer Systems and Software
Engineering, University College of Engineering and Technology Malaysia,
Locked Bag 12, 25000, Kuantan, Pahang, Malaysia. (phone:+6095492113;
fax: +6095492144; email: jasni@kuktem.edu.my).
 Abdul R M Fauzi is a consultant chest physician at Kulliyyah of
Medicine,P.O. Box 141, International Islamic University of Malaysia, Jalan
Hospital, 25150 Kuantan, Pahang, Malaysia. (email:
mfar2718@gmail.com)

 Coatrieux et al [5] proposed Region of Interest (ROI) to
preserve the diagnostic zone and Region of Non Interest
(RONI) whose integrity need not be preserved and served as
the watermark carrier. Wong [6] described a fragile marking
technique in which a digest was obtained using a hash
function. The image, image dimensions, and marking key
were hashed during embedding and used to modify the
least-significant bit plane of the original image. This was
done in such a way that when the correct detection side
information and unaltered marked image were provided to
the detector, a bi-level image chosen by the owner (such as a
company logo or insignia), was observed. This technique
had localization properties and could identify regions of
modified pixels within a marked image.
 However, Holliman and Memon [7] presented a vector
quantization (VQ) counterfeiting attack that could construct
a counterfeit image from a VQ codebook generated from a
set of watermarked images. To solve the problem of VQ
counterfeiting attack, several enhanced algorithms had been
proposed [8][9]. Nonetheless, they either failed to
effectively address the problem or sacrificed tamper
localization accuracy of the original methods [10]. Celik et
al [10] then presented an algorithm based on Wong’s
scheme and demonstrated that their algorithm could thwart
the VQ codebook but compromised on the accuracy of
localization. Previous researchers working in the area of
medical imaging had not included tamper detection and
recovery in their work.

In this paper, we propose a watermarking method for
image tamper detection and recovery. We are interested in
local manipulation such as additional or removal of part of
an image. In the next section, an efficient and effective
digital watermarking method for image tamper detection
and recovery is presented. The method is based on four
concepts introduced from the literature: 1) block-based [8];
2) separating authentication bits and recovery bits [11]; 3)
hierarchical [10]; and 4) average intensity as an image
feature [12]. The method is efficient as it only uses simple
operations such as parity check and comparison between
average intensities. It is effective because the scheme
inspects the image hierarchically with the inspection view
increasing along with the hierarchy so that the accuracy of
tamper localisation can be ensured. This scheme can
perform both tamper detection and recovery for tampered
images. Tamper detection is achieved through a block-
based, inspection and recovery of a tampered block and
relies on its feature information hidden in another block,
which can be determined by a one-dimensional
transformation. Using simple operations such as parity
checks and average intensities comparison makes our
method more efficient compared to the method proposed by
Celik et al [10].

Proceedings of the 28th IEEE
EMBS Annual International Conference
New York City, USA, Aug 30-Sept 3, 2006

FrC10.1

1-4244-0033-3/06/$20.00 ©2006 IEEE. 3270

II. METHODOLOGY

 We describe the watermarking embedding procedure in
this section. Each image is of size M x N pixels where M
and N are assumed to be a multiple of eight and the number
of grey levels is 256.

A. Celik et. al’s[10] scheme
 Celik et al. [10] proposed a technique that embedded and
extracted a watermark in a multilevel hierarchy. On the
lowest level, the image X was partitioned into O x P non-
overlapping blocks. At each successive level, the image was
partitioned into blocks that in turn were composed of 2 x 2
blocks at the preceding level of the hierarchy.
 Although they claimed that their method eliminated the
vulnerabilities of Wong’s [6] scheme to VQ attack, we
found however that the method compromised the accuracy
of localization. For example, using ultrasound image of size
800 x 600 pixels, the image was partitioned, resulting in
three level hierarchical block structure with smallest block
of 200 x 150 pixels as shown in Fig. 1.

Fig. 1. Partitioning of image size 800 x 600 pixels

B. Our scheme: Preparation

 We propose a block of size 8 x 8 for better accuracy of
localization, although the scheme allows user to choose the
accuracy they want. Our scheme begins by preparing a one
to one block mapping sequence A → B → C → D → . . .
→ A for watermarking embedding, where each symbol
denotes an individual block. The intensity feature of block
A will be embedded in block B, and the intensity feature of
block B will be embedded in block C, etc. Voyatzis and
Pitas [13] presented a two dimensional discrete Torus
automorphism for creating a unique and random mapping of
the pixels within an image. Based on that we use a 1D
transformation to get a one-to-one mapping:

 1]mod)[(+×= bNBkB
r

, (1)

where],1[,, bNkBB ∈

v , k is a secret key (prime number), and

Nb is the total number of blocks in the image.
 The generation algorithm of the block-mapping sequence
is as follows:
• Divide the image into non-overlapping blocks of 8x8

pixels.

• Assign a unique integer },...,3,2,1{ bNB ∈ to each block

from left to right and top to bottom, where Nb= (M/8) x
(N/8).

• Randomly pick a prime number],1[bNk ∈ .

• For each block number B, apply equation (1) to obtain
B
r

, the number of its mapping block.
• Record all pairs of B and B

r
 to form the block mapping

sequence.

TABLE 1
MAPPING OF BLOCKS WITH K=23, 26 AND Nb=40

k B 1 2 3 4 5 6 21 22 23 24
23 B

r
24 7 30 13 36 19 4 27 10 33

26 B
r

27 13 39 25 11 37 27 13 39 25

 Note that the secret key, k, must be a prime in order to
obtain a one to one mapping; otherwise, the period is less
than Nb and a one to many mapping may occur. Table 1 lists
some parts of the mapping sequence generated with Nb=40,
k=23 (prime) and 26 (not prime) respectively. In this table,
B
r

starts to repeat at B=21 when k=26, which is not a prime.

C. Our scheme: Embedding

 For each block B of 8x8 pixels, we further divide it into
four sub-blocks of 4x4 pixels. The watermark in each sub-
block is a 3-tuple (v, p, r), where both v and p are 1-bit
authentication watermark, and r is a 7-bit recovery
watermark for the corresponding sub-block within block A
mapped to B. The following algorithm describes how the 3-
tuple watermark of each sub-block is generated and
embedded:
• Set the LSB of each pixel within the block to zero and

compute the average intensity of the block and each of
its four sub-blocks, denoted by avg_B and avg_Bs,
respectively.

• Generate the authentication watermark, v, of each sub-
block as:

⎩
⎨
⎧

=

0

1
v

,

,__

otherwise

BavgBsavgif ≥ (2)

• Generate the parity check bit, p, of each sub-block as:

⎩
⎨
⎧

=

,0

,1

otherwise

oddisnumif
p (3)

where num is the total number of 1s in the seven MSBs of
avg_Bs.
• From the mapping sequence generated in the

preparation step, obtain block A whose recovery
information will be stored in block B.

• Compute the average intensity of each corresponding
sub-block As within A, and denote it avg_As.

800 x 600

400 x 300

200 x 150

3271

• Obtain the recovery intensity, r, of As by taking 7 MSB
in avg_As. Seven bits is used as we are using one bit
for watermarking .

• Embed the 3-tuple watermark (v, p, r), 9 bits in all, onto
the LSB of of each pixel in a 3x3 block within Bs as
shown in fig. 2, where r1 is the MSB, e.g. if the
intensity of As is 155, r1, r2, r3, r4, r5, r6 and r7 is 1, 0,
0, 1, 1, 0 and 1 respectively.

v p r1
r2 r2 r4
r5 r6 r7

Fig.2. Watermark positioned in the LSB of 3x3 block

D. Our scheme: Tamper Detection

 The test image is first divided into non-overlapping blocks
of 8x8 pixels, as in watermarking embedding process. For
each block denoted as B

r
, we first set the LSBs of each pixel

in B
r

 to zero and compute its average intensity, denoted as
avg_ B

r
. We then perform 2-level detection. In level-1

detection, we examine each 4x4 sub-block within one block.
In level-2 detection, we treat an 8x8 block as one unit.
Level-3 detection is for VQ attack resilience only. The
procedure of our hierarchical tamper detection scheme is
describe in the following:

Level-1 detection.
• For each sub-block B

r
s of 4x4 pixels within the block

B
r

, perform the following steps:
• Extract v and p from B

r
s.

• Set the LSBs of each pixel within each B
r

s to zero and
compute the average intensity for each sub-block B

r
s,

denoted as avg_ B
r

s.
• Count the total number of 1s in avg_ B

r
s and denote it as

Ps.

• Set the parity check bit p’ of B
r

s to 1 if Ps is odd,
otherwise, set it to 0.

• Compare p’ with p. If they are not equal, mark B
r

s as
tampered and complete the detection for B

r
s.

• Set the algebraic relation v’=1 if avg_ B
r

s>=avg_ B
r

,
otherwise, set it to 0.

• Compare v’ with v. If they are not equal, mark B
r

s as
tampered and complete the detection for B

r
s; otherwise

mark it valid.
Level-2 detection.
 For each block of size 8x8 pixels, mark this block
tampered if any of its sub-block is marked tampered;
otherwise mark it valid.

Level-3 detection.
 For each valid block B

r
 of size 8x8 pixels, perform the

following steps:
• Find the block number of block C, where block C is the

one in which the intensity feature of block B
r

is
embedded.

• Locate block C.
• If block C is marked tampered, assume block B

r
 is valid

and complete the test.
• If block C is valid, perform the following steps:
• Obtain the 7-bit should-be intensity of each B

r
s by

extracting the LSBs from each pixels in the
corresponding block within block C, padding one zero
to the end to make an 8-bit value.

• Compare with avg_ B
r

s and mark B
r

 tampered if they are
different.

E. Our scheme: Image Recovery

 After the detection stage, all the blocks are marked either
valid or tampered. We only need to recover the tampered
blocks and leave those valid blocks as they are. For
convenient, we call the tampered block, block B and the
block embedded with its intensity, block C. The restoration
procedure for each tampered block is described as follows:
• Calculate the block number for block C.
• Locate block C
• Obtain the 7-bit intensity of each sub-block within

block B, padding one zero to the end to make an 8-bit
value.

• Replace the new intensity of each pixel within the sub-
block with this new 8-bit intensity.

• Repeat step 3 and 4 for all sub-blocks within block B.

III. RESULTS

 We carried out two experiments to test our algorithms. We
watermarked our test image with peak signal to noise ratio
of 54.8 dB. In the first experiment, we tampered a
watermarked image by adding a clone of part of the original
image as in Fig. 1 (a). Level-1 detection left some areas
undetected as seen in Fig. 3(b). 100% tamper was detected
using level-2.

Tamper detect

 (a) (b)
Tamper detect

(c)

Fig. 3. (a) Tampered image (b) level-1 detection with some areas
undetected (c) level-2 with 100%detection

3272

68
192

526

1010
1080

0

200

400

600

800

1000

1200

10 20 30 40 50

Tampered area (%)

N
o

. o
f

u
n

re
co

ve
re

d
 b

lo
ck

s
(t

o
ta

l 7
50

0)

Fig.4. Unrecovered blocks for single tampered block

 We used spread tampering and single block tampering
ranging from 10% to 50% of the image as shown in Fig. 5
with k=3739 for our second experiment to determine
recovery rate of our method. Our results showed that we
could recover all tampered areas for spread-tampered blocks
and the result for single tampered block is shown in Fig. 4.

Fig.5. Tampered Images

IV. CONCLUSION

 This paper discussed the security of medical images and
reviewed some work done on them. We also proposed a
watermarking scheme that could detect tamper and recover
the image. The purposes were to verify the integrity and the
authenticity of the images. The experimental results
demonstrated that the precision of tamper detection and
localization was close to 100% after level-2 detection. We
achieved 100% recovery rate for spread tampered blocks
and more than 86% for a less than half tampered image in a
single tampered block.
 By keeping a low distortion level, thus intact watermarked
images, these images could also be used for other general
purposes unrelated to patient care such as teaching or
display in medical museums for students.

REFERENCES

[1] M.L. Miller, I.J. Cox, J.M.G. Linnartz and T. Kalker, "A
Review of Watermarking Principles and Practices," in Digital
Signal Processing for Multimedia Syatems, K.K. parhi and T.
Nishitani Eds. New York: Marcel Dekker Inc., 1999, pp. 461-485.
 [2] D. Anand and U. Niranjan, "Watermarking Medical Images
with Patient Information," in IEEE/EMBS Conference, 1998, pp.
703-706.
[3] S.-. Miaou, C.-. Hsu, Y.-. Tsai and H.-. Chao, "A secure data
hiding technique with heterogeneous data-combining capability for
electronic patient records," in 22nd Annual International
Conference of the IEEE Engineering in Medicine and Biology
Society, Jul 23-28 2000, pp. 280-283.
[4] B. Macq and F. Dewey, "Trusted Headers for Medical Images,"
in DFG VIIII-DII Watermarking Workshop, 1999.
[5] G. Coatrieux, B. Sankur and H. Maitre, "Strict Integrity Control
of Biomedical Images," in SPIE Conf. 4314: Security and
Watermarking of Multimedia Contents III, 2001.
[6] P.W. Wong, “A public key watermark for image verification
and authentication”, in Proceedings of the IEEE International
Conference on Image Processing, Chicago, IL, October 1998, pp.
455-459.
[7] M. Holliman, N. Memon, “Counterfeiting attacks on oblivious
block-wise independent invisible watermarking schemes, IEEE
Trans. Image Processing, 9(2000), pp. 432-441.
[8] J. Fridrich, M. Goljan, A.C. Baldoza, “New fragile
authentication watermark for images”, in Proceedings of the IEEE
International Conference on Image Processing, Vancouver, BC,
Canada, September 2000, pp. 10-13.
[9] P.W. Wong, N. Memon, “Secret and public key authentication
schemes that resist vector quantization attack”, Proceeding SPIE
3971 (75), 2000, pp. 417-427.
[10] M. U. Celik, G. Sharma, E. Saber, A.M. Tekalp, “Hierarchical
watermarking for secure image authentication with localization”,
IEEE Trans. Image Processing, 11(6) 2002, pp.585-594.
[11] C. Lin , S. Chang, “A robust image authentication method
distinguishing JPEG compression from malicious manipulation”,
IEEE Trans. Circuits and Video Technology, 11(2), pp. 153-168.
[12] D. C. Lou, J. L. Liu, “Fault resilient and compression tolerant
digital signature for image authentication”, IEEE Trans. Consumer
Electronics, 46(1), pp. 31-39.
[13] G. Voyatzis, I. Pitas, “ Applications of toral automorphisms in
image watermarking”, in Proceedings of the International
Conference on Image Processing, vol. II, 1996, pp. 237-240.

Tamper
rate

Spread Tampered
blocks

Single tampered
block

10%

20%

30%

40%

50%

3273

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for export to IEEE PDF eXpress. May 2005. PaperCept.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

