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Abstract— Human arm dynamics can be used for human
body performance analysis or for control of human-machine
interfaces. In this paper, a novel method for online estimation
of human forearm dynamics using a second-order quasi-linear
model is presented. The proposed method uses Moving Window
Least Squares to locally identify dynamic parameters for a lim-
ited number of operating points in a variable space defined by
elbow joint angle and velocity, and the electromyogram signals
collected from upper-arm muscles. The dynamic parameters for
these limited points are then employed to train a Radial Basis
Function Artificial Neural Network to interpolate/extrapolate
for online estimates of arm dynamic parameters for other
operating points in the variable space. The proposed estimation
method is evaluated on a single degree-of-freedom robotic arm.

I. INTRODUCTION

It is known that the impedance of elbow is a function
of joint kinematic data such as joint angle and velocity as
well as Muscle Activation Levels (MALs) [1], [2], [3], [4].
Considering this fact, a variety of biomechanical models have
been developed to predict joint torque from individual muscle
forces. Explicit model-based approaches that use muscle Hill
model are one group of them [4]. In an alternative approach,
elbow joint dynamics have frequently been modelled using
second-order quasi-linear dynamics [3], [5]. However, so far
most of the effort has only focused on off-line estimation of
joint dynamics. Real-time estimation of joint stiffness and
damping has been implemented under random perturbations
[6] or biased inputs [7]. These operation conditions are not
suitable for applications in which applying perturbations in
real-time is not feasible, e.g. haptics or telerobotics.

This work focuses on online estimation of a time-varying
dynamic model of human arm for contact applications where
the motion of the arm is limited to elbow movement in the
horizontal plane. Towards this end, a second-order quasi-
linear model for each operating point in a six dimensional
(6D) operational space defined by elbow joint angle and
velocity, and electromyogram (EMG) signals from upper-arm
muscles is considered. The model parameters are identified
for a limited number of points using a Moving Window Least
Squares (MWLS) estimation method. The limited number
of points is justified as in contact applications the arm
workspace and movement is relatively small and slow. A
Radial Basis Function Artificial Neural Network (RBFANN)
is then trained with the limited points and is utilized for
online interpolation/extrapolation of the quasi-linear dynamic
model parameters for other operating points, provided upper-
arm EMG signals and elbow joint angle and angular velocity.

II. ELBOW JOINT DYNAMICS MODELLING

Elbow joint dynamics have frequently been modelled
using a second-order quasi-linear dynamics [3], [5]

T (t) = T ∗(t) + [Mθ̈(t) + B(λ(t))θ̇(t) + K(λ(t))Δθ(t)] (1)

where T (t) represents the net torque acting about the joint,
T ∗(t) denotes a background low-frequency torque generated
in elbow by direct commend from brain, Δθ(t) is the elbow
position displacement about its equilibrium point, M , B and
K are inertial, damping and stiffness parameters, and λ(t)
denotes the “operating point (state)” of the elbow at time t.
Since the inertia of the forearm and hand is constant in the
entire operating range of elbow, its value is independent of
the operating point. It is well known that the impedance of
elbow in static posture is a strong function of elbow angle
as well as MALs [1], [3], [4]. During motion the impedance
is also a function of angular velocity [2]. Therefore, λ(t)
is determined by upper-arm MALs represented by EMG
signals, and elbow angular position and velocity. In our case,
considering four EMG signals collected, the variable space
is 6D, that is λ(t) = [EMGi, θ, θ̇], i = 1, ..., 4.

III. IMPEDANCE IDENTIFICATION METHODOLOGY

As mentioned before, for elbow motion in the horizontal
plane, joint dynamics is a strong function of the “arm
variable” vector λ(t), i.e. MAL of upper-arm muscles (four
signals in our case) and joint angle and velocity [1], [3], [4].
Since the forearm physical properties and hand posture do
not change in the entire experiment, the moment of inertia of
the forearm is constant and is identified independently. We
would like to develop an impedance identification methodol-
ogy that provides an online estimate of operator’s arm locally
linearized impedance parameters, i.e. B(λ(t)) and K(λ(t)).
Therefore, we divide the 6D “variable space” into a 6D grid
spanned by the arm variables. The impedance associated
with a limited number of cells are calculated by feeding the
measured hand position and force at that operating point to
a MWLS least squares algorithm, as shown in Figure 1.

Since the measurement of the impedance parameters for all
grid cells is very time consuming and difficult if not impossi-
ble, an efficient interpolation/extrapolation method has to be
used to predict the impedance parameters in the arm variable
space based on the limited number of identified points. In this
work, an RBFANN is employed to interpolate/extrapolate
the arm impedance in its entire 6D variable space. The
network is trained with the limited number of points obtained
from least squares. RBFANN has the advantage of minimum
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Fig. 1. Block diagram of the proposed method for approximating arm
impedance for all operating points using RBFANN. Training process is
shown with dashed line.

memory usage for function approximation and has been used
significantly for interpolation [8].

In the learning process as shown by dashed lines in Figure
1, the network is trained such that its impedance estimation
output for the training points matches the impedance parame-
ters derived from least squares using measured hand position
and force. In the operational phase, the EMG signals, the
elbow joint angle and angular velocity are quantized and
fed to the trained RBFANN to obtain an online estimate
of the impedance parameters for current operating points, as
shown by solid lines in Figure 1. The details of the described
experimental procedure will be explained next.

IV. EXPERIMENTAL SETUP AND PROCEDURE

Impedance identification experiments were conducted on a
single degree-of-freedom (1-DOF) robotic testbed (QArm1)
[9], as illustrated in Figure 2. The robotic arm rotates in
the horizontal plane and can apply up to 15N/45N contin-
uous/intermittent force to subject’s arm. The apparatus is
equipped with an ATI Gamma 6-DOF force/torque sensor
and an encoder to measure hand force and motor angle. In
our experiments, subject’s shoulder and wrist were placed in
the arm troughs ensuring that the upper-arm was stabilized
and the elbow joint axis coincided with the bar rotation axis.
Since shoulder joint angle affects the doubly muscles length
and thus the impedance of elbow joint, the subject’s shoulder
was stabilized at 90◦ abduction, 15◦ horizontal adduction and
neutral pronation-supination. Subjects were asked to relax
all muscles not directly involved in elbow flexion/extension.
EMG signals were collected from the four muscles biceps
brachii, tricpes brachii, brachialis and brachioradialis. Due
to the size of biceps and triceps muscles, multiple electrodes
were placed at different locations for more accurate MAL
estimation. The method proposed in [9] was used for the
normalization of EMG measurements. All position, force and
EMG data were sampled at 1kHz.

Experiments were conducted under three condition types
as outlined below. In each experiment, the EMG data from
the four muscles, the elbow angle, and the subject’s force at
wrist point were recorded. The experiments were conducted
on the right arm of four male subjects with the average age

Fig. 2. The 1-DOF experimental setup (QARM1).

of 24. The subjects had no known neuromuscular deficits of
the right shoulder, arm or hand. Due to limited space, only a
sample of QArm1 applied torque, elbow joint and torque, and
EMG signals recorded from subject M1 under experimental
condition II are shown in Figure 3.
Experiment type I (Relaxed Muscles): In this condition that
lasted for 60 seconds, subjects were asked to relax all upper-
arm muscles and do not react to random torque perturbations
applied by QArm1.
Experiment type II (Voluntary Constant EMG Posture
Control): In this condition, the processed EMG (PEMG) of
biceps was shown to subjects on a computer display and they
were asked to keep the signal at a displayed constant level
[3]. Meanwhile random torque perturbations were applied
to subjects’ elbow by QArm1 and the subjects were asked
to keep their arm angle constant, while concentrating more
on PEMG level. This experiment was designed to enforce
subjects to control the elbow joint damping and stiffness by
co-activating the antagonist muscle pairs. Data was recorded
for five elbow angles (45, 20, 0, -20 and -40 flexion) and four
PEMG levels (20%, 60%, 90% and 120% of the normalized
biceps PEMG level). In general, higher PEMG levels were
more challenging to maintain than lower levels.
Experiment type III (Constant Load Posture Control):
In this condition, which was also employed in [3], torque
perturbations biased with constant load were applied by
QArm1 while subjects were asked to keep their arm angle
constant. This experiment was designed to identify the elbow
joint impedance in the presence of a constant background
force applied to the arm. Data was recorded for five elbow
angles (40, 20, 0, -20 and -40 flexion) using four constant
loads (4.44, 2.22, -2.22 and -4.44 Nm.)

The proposed experiments were designed for impedance
identification in elbow posture control situation since the
operation is slow in contact applications. The identification
of elbow impedance in motion control is more challenging
due to the motion artifacts induced in EMG measurements,
which are caused by the movement of muscles under the
electrodes placed on skin.

A. Signal Processing Methods

A 9-tap length median filter was used to remove the spiky
noise in measured hand force. The signal bias is removed
from the recorded EMG signal, then rectified and passed
through a moving average filter with window size of 300
samples [10]. To find the position displacement from the
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Fig. 3. Sample collected data from subject M1 under experimental
condition type II (Voluntary Constant EMG Posture Control).

equilibrium point, that is Δθ in (1), the elbow equilibrium
position was calculated using a 2000-tap FIR low-pass filter
with cutoff frequency 0.01 Hz and shifting back by 1000
samples to cancel the delay caused by filtering. Then the
calculated bias is subtracted from the measured angle to com-
pute the position displacements Δθ [6]. The angular velocity
and acceleration were derived from pulley angular position
and velocity using backward difference differentiation. The
angle and the computed velocity and acceleration are passed
through a 100-tap moving average filter to remove the effect
of quantization noise. To compensate for the delay caused
by filtering, the resulted signals were shifted back by half
the window size which was 50 samples.

V. IMPEDANCE IDENTIFICATION PROCEDURE AND

RESULTS

In this section, the details of the impedance identifica-
tion algorithms and experimental results are presented. The
identification process is conducted in three phases: i) finding
lower arm and hand inertia, ii) using MWLS to identify the
arm “stiffness” and “damping” for limited points in the 6D
variable space, and iii) using an RBFANN to online estimate
the elbow impedance after training the network offline with
the above MWLS estimation results.

TABLE I

THE COMPUTED INERTIA FOR FOUR SUBJECTS.

M1 M2 M3 M4
0.0779 kgm2 0.1030 kgm2 0.0815 kgm2 0.1181 kgm2

A. Lower Arm and Hand Moment of Inertia Identification

Since the forearm physical properties and subject’s hand
posture do not change in all experiments, the lower arm
and hand moment of inertia is almost constant and can be
identified independently. To find inertia, subjects were asked
to relax all upper-arm muscles in experiment type I, that is
T �

h (t) = 0. Under this condition, inertial effect dominates
the elbow dynamics. Therefore, as a standard procedure in
the literature, offline least squares was employed to find the
dynamic parameters M , B and K in the second-order model
(1) according to

Th = P[M, B, K]T where (2)

P = [θ̈h, θ̇h, Δθh] (3)

[M̂, B̂, K̂] = (PT
P)−1

P
T
Th (4)

where the vectors Δθh, θ̇h, θ̈h and Th represent the
data collected over the entire length of the experiment. The
hand and arm inertia were found after subtracting the pre-
identified wrist clamp inertia from the identified total inertia.
The computed inertia for all subjects, as displayed in Table
I, are within the range of 0.0277 to 0.113 kgm2 reported in
the literature [4], [6].

B. Stiffness and Damping Identification

After finding the arm moment of inertia, the next step is
to identify damping B(λ(t)) and stiffness K(λ(t)) in (1).
Towards this goal, (1) is parameterized as

H(t) = Y(t)L(t) where (5)

H(t) = Th(t) − T
∗

h(t) − Iθ̈h(t) (6)

Y(t) = [θ̇h(t) Δθh(t)] (7)

L(t) = [B(λ(t)) K(λ(t))]T (8)

where the vectors Δθh(t), θ̇h(t), θ̈h(t),Th(t), T
∗

h(t) and
H(t) represent the data collected over an interval of time.

Since the frequency of random perturbations applied to
elbow and the response of the arm dynamics are higher than
the frequency of the voluntary background force generated
directly by brain commands, to calculate T

∗

h(t), the mea-
sured elbow torque Th(t) is passed through a 100-tap FIR
low-pass filter with cutoff frequency 5Hz. To compensate
for the filtering delay, the resulting signal is shifted back in
time by 50 samples. Afterwards, the calculated T

∗

h(t) and the
inertia term M θ̈h(t) are subtracted from Th(t) to calculate
H(t) in (6). Since the inertial effect of wrist clamp was
measured by force sensor, the total identified inertia for wrist
clamp and forearm was used as M(t).

To identify stiffness K(λ(t)) and damping B(λ(t)) at
time t, a MWLS identification method is employed. In this
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Fig. 4. Subject M1 identification results under experiment type II condition.
a,b) Stiffness K(t) and damping B(t) using MWLS , c) elbow torque
prediction using the identified quasi-linear model.

method, a moving window of w + 1 torque and kinematic
samples centered at time t are used for offline least square
estimation L(t) = Y(t)T

Y(t))−1
Y(t)T

H(t). In our case,
w = 300. After estimation the first and the last 300 samples
are cut out to exclude the undesirable filtering effects. Figures
4.a,b display the identified stiffness and damping for subject
M1 under experimental condition type II. These values are
close to the range of damping [0.82-5.5] Nms/rad and
stiffness [3-110] Nm/rad reported in the literature [1],
[3], [4], [11]. The estimated torque T̂h(t) using quasi-linear
model (1) and the identified parameters are also compared to
the torque applied to elbow Figure in 4.c. The average value
of the Relative Mean Square Error (RMSE) defined as

RMSE = 100 ∗ Σt(Th(t) − T̂h(t))2

√
ΣtT 2

h

√
ΣtT̂ 2

h

(9)

for all subjects and experimental condition types II and III
are displayed in Table II.

Since the algorithm is trying to fit the best linear model
parameters to the nonlinear dynamics of human arm, at few
samples of the identified values become negative. Moreover,
after statistical analysis of the collected data, it was observed
that due to the stochastic nature of EMG signals, multiple
stiffness or damping values were produced within a close
vicinity of some operating points λ(t). Therefore, before
training the RBFANN, the collected samples were prepro-
cessed and reduced in number substantially according to a
novel efficient algorithm to speed up the neighborhood search
operation and search for redundant samples. Since the size of
the 6D data matrix was very large (hundreds of megabytes),
the data was reformatted into a 6 × 105 sparse matrix. The
algorithm steps are briefly explained below:

1. The identification results with negative values, if any,
were discarded.

2. The input values (4 EMG signals, angular position
and velocity) were uniformly quantized to 20 points
each within their dynamic range. Afterwards, the iden-
tification results for similar quantized input values

TABLE II

TORQUE ESTIMATION ERROR USING QUASI-LINEAR MODEL.

Average RMSE M1 M2 M3 M4
Type II 7% 10% 7% 11%
Type III 6% 3% 3% 3%

were averaged after exclusion of any outlier. Input
samples which were distant three times their standard
deviation away from the sample mean were considered
as outliers.

3. Impedance spatial outliers in the 6D variable space,
spanned by quantized operating point vector, were
discarded. Each identified value was determined as
a spatial outlier if its difference with mean value
of its neighboring samples was greater or smaller
than 3 times of its standard deviation. The neighbor
samples were samples whose Euclidian distance from
the chosen sample in 6D space were smaller or equal
to r (in this analysis r = 3).

The above algorithm reduced the number of samples by
300 folds to approximately 2000 samples. Compared to the
original sampled data and also evenly down sampled data, the
use of quantized and refined data for training has improved
the generalization performance of the RBFANN, which will
be explained in the next section.

C. RBFANN-Based Impedance Estimator

The quantized 6D space spanned by the operating point
vector λ(t) = [bi(t), tri(t), bra(t), radi(t), θh(t), θ̇h(t)] has
a size of 206 = 6.4 × 107, where the arguments in
the bracket refer to biceps EMG, triceps EMG, Brachialis
EMG, Brachioradialis EMG, joint angle and angular velocity.
However, since only the dynamic parameters of about 2000
cells are found using the MWLS identification method as
described previously, the remaining cell values should be de-
termined by interpolation/extrapolation among the available
cells data. This is done using an RBFANN, which is known
as a universal approximator and interpolator for nonlinear
input-output mappings [8]. In this application, the inputs
of RBFANN are EMG signals from biceps brachii, triceps,
brachialis, and brachioradialis muscles, and elbow joint angle
and velocity. The network output is the estimated impedance
parameters, i.e. stiffness K or damping B, as illustrated
Figure 1. In addition to the interpolation, RBFANN smooths
the impedance function in the 6D quantized input space.

In the off-line training phase, the RBF network is pre-
sented with the network inputs and the identified impedance
L(t) collected under experimental condition types II and III,
which were refined by the search algorithm explained previ-
ously in this section. Two separate networks were trained for
damping B and stiffness K . To find the optimal number of
nodes for network hidden layer, networks were trained and
validated against a second data set using impedance RMSE
and Cross-Correlation (CC) criteria defined as

CC = 100 ∗ Σiyi∗ŷi√
Σiy

2

i

√
Σiŷ

2

i
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TABLE III

RBFANN VALIDATION RESULTS FOR DAMPING B AND STIFFNESS K .

Averaged RMSE M1 M2 M3 M4
Damping B

RMSE 29% 53% 38% 35%
CC 83% 70% 78% 75%

Stiffness K

RMSE 17% 34% 26% 29%
CC 91% 70% 87% 83%

where yi and ŷi are the measured and the estimated
impedance parameters, respectively. Cross-correlation is a
measure of similarity of the y and ŷ profiles regardless of
scaling. The closer the value is to 100, the higher the level of
similarity is between the signals. It was found that 55 nodes
for the estimation of B and 65 nodes for the estimation of
K provided relatively maximum CC and minimum RMSE
for validation results. Network training was terminated if
the target mean square error 0.01% was met or the gradient
became smaller than 10−10.

The network validation results for B and K are displayed
in Table III. The RBFANN estimate of B and K for subject
M1 are displayed in Figures 5a,b. As it is expected, the output
of the network is discrete. The reason is that the temporal
neighboring input data are converted into similar values in
the quantization process. Although the accuracy of parameter
for K and especially B is not in the order of single digits,
the online identified parameters clearly follow the pattern
of changes in arm impedance. This level of accuracy can
be enough for arm dynamic analysis and improved tradeoff
between stability and performance in telerobotic and haptic
control systems. One major factor in parameter error is the
stochastic nature of EMG signals. The online estimation
accuracy may be improved by changing the neural network
input quantization level, and the use of more sensors for each
muscle for more accurate representation of MALs.

It is expected that the network generated for each subject
not be applicable to other subjects (inter-subject) and a
separate network should be trained for each individual.

VI. CONCLUSION

In this work, a novel methodology for online estimation
of human arm impedance for elbow motion in horizontal
plane was proposed. The impedance was approximated with
a second-order quasi-linear dynamic model using upper-arm
EMG signals, and elbow angular position and velocity. The
identification was conducted in three phases: i) the inertia of
forearm and wrist were identified while subject was asked
to relax all upper-arm muscles, ii) moving average least
squares was employed to identify the stiffness and damping
for a limited number of points, iii) an RBF artificial neural
network was trained and used to approximate the impedance
model parameters in the entire elbow operating space by in-
terpolating/extraploating among the limited identified points
found in (ii). In future, the possibility of achieving more
accurate impedance estimates through the use of different
neural network input quantization levels and the use of
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Fig. 5. RBFANN estimation results for Subject M1

more EMG sensors on each muscle will be investigated. In
addition, the identified impedance will be incorporated and
tested in adaptive telerobotic and haptic control systems.
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