
Abstract—In an effort to enable embedded sensors that are 
hardware and bandwidth constrained to acquire high-
frequency neural signals, signal-filtering and signal-
compression algorithms have been implemented and tested on a 
commercial-off-the-shelf embedded-system platform.  The 
sensor modules have been programmed to acquire, filter, and 
transmit raw biological signals at a rate of 32 kbps.  
Furthermore, on-board signal processing enables one channel 
sampled at a rate of 4 kS/s at 12-bit resolution to be 
compressed via ADPCM and transmitted in real time. In 
addition, the sensors can be configured to only transmit 
individual time-referenced “spike” waveforms, or only the 
spike parameters for alleviating network traffic and increasing 
battery life. 

I. INTRODUCTION

 major challenge to realizing a remote biological 
monitoring system is creating the miniature wireless 

biological sensors that serve as the interface between the test 
subject and the network infrastructure. These wireless 
biological sensors must be capable of sensing, amplifying, 
and transmitting biological signals which range from the 
order of tens of microvolts to several milivolts, while being 
non-obtrusive (hence compact) and low-power (for 
sufficient battery life). The vast majority of the power (often 
as much as 90%) used by the wireless sensor is dedicated to 
the radio transmitter for signal transmission. Therefore, the 
addition of local data-processing capabilities can prolong 
battery life significantly due to the elimination of the 
requirement for constant high-throughput wireless data 
transmission.  In addition, on-board signal processing 
capabilities, with the presence of a receiver, can facilitate 
user-defined multi-mode operation, thus allowing the 
researcher to switch between low-power event detection and 
variable rates of real-time biological signal transmission. 
Therefore, a system with bi-directional communications in 
addition to on-board computational abilities would be 
superior to a simple transmitter/receiver combination.  
Possible approaches for implementing a wireless biological 
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sensor range from assembling commercial-off-the-shelf PC 
(COTS-PC) components [1] to custom fabricating integrated 
circuits [2]. COTS-PC components yield large, power 
intensive units with powerful communications and signal 
processing capabilities, while custom integrated circuits 
yield very specialized, compact, and power-efficient 
solutions. Unfortunately, investing in the development of 
custom integrated signal acquisition circuits, multi-channel 
digital signal processors, transmitters, and receivers for non-
standardized applications such as biological signal recording 
(unlike cellular phones, which operate on strict, national 
standards) may not be economically feasible.  

II. DEFINITION OF A NEW APPROACH

A. Existing Miniature-Scale Neural Recording Systems 
A thorough review of existing approaches towards 

developing wireless biological sensors has been covered in 
[3].  Although the custom-integrated amplifiers and 
transceivers demonstrated in [6]-[10] feature very small size 
(~ 5 to 100 mm2) and low power consumption (~ 2 to  
14 mWs), they do not provide digital signal processing or 
bi-directional communications (except for the system 
described in [9], which can modulate the inductive power 
link as a carrier signal for communication from the base 
station to the sensor).  In addition, large re-integration 
efforts are required for even minor upgrades and 
improvements (e.g., channel count, signal bandwidth, etc.).  
Other miniature biological sensors, which are composed of 
COTS ICs for the amplifier and the transmitter [11]-[13], 
have performance characteristics similar to those that use 
custom ICs, but have a much shorter development time, 
greater size, more mass, and increased power consumption.  
Although a wireless neural-recording system based on 
COTS-PC components with ample signal-processing and bi-
directional communications abilities has been demonstrated 
[1], its size, weight, and power consumption is significantly 
greater than the aforementioned integrated systems. 

B. TinyOS and the Mica-Based Sensor Network 
TinyOS [16] is a miniature-footprint operating system that 

has been designed to operate on hardware-constrained 
embedded computers (frequently referred to as “motes”) [4].   
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The operating system gives the developer high-level control 
over low-level hardware.  The motes have been used in a 
variety of low-frequency, distributed sensing applications.  
The type of mote used in this work is the TelosB mote 
produced by Crossbow Technology Inc. (San Jose, CA, 
USA) [14] and Moteiv (El Cerrito, CA, USA) [15], which 
operates on TinyOS.  Data is processed by a microprocessor 
(MSP430, Texas Instruments, Dallas, TX, USA) with 1 MB 
of flash memory.  The TI MSP430 has 8 analog input 
channels that are time-multiplexed onto a single analog-to-
digital converter (ADC).  Data transmission is handled by a 
ZigBee-compliant (IEEE 802.15.4) 2.4-GHz transceiver 
(Chipcon CC2420, Oslo, Norway).  An antenna embedded 
on the printed-circuit board is used for wireless 
communication.  When two 1.5-V batteries (Panasonic 
Industrial AA, Secaucus, NJ, USA) are installed, the TelosB 
mote becomes approximately the size of a matchbox (65 × 
31 × 6 mm3).  Users have the option of using more compact 
3-V batteries that may be more suitable for their application 
(e.g., coin cells for experiments involving rodents).  One 
TelosB mote, running a signal-acquisition, filtering, and 
transmission framework [17], has been interfaced with the 
test subject via a biological interface.  A second TelosB 
mote interfaced with a gateway module, which in this 
experiment is a laptop (Thinkpad X21, IBM, Armonk, NY, 
USA) running a modified version of Emstar [18] to emulate 
a Stargate Gateway (Crossbow Technology Inc., San Jose, 
CA, USA), wirelessly receives and forwards sensor readings 
over the network (Ethernet).  The gateway module also 
provides sensors with configuration data for remote 
adjustment of filter properties. 

A basic wireless neural recording, archiving, and hosting 
system based on embedded sensors has been demonstrated; 
however, continuous signal transmission limits battery life 
and spike recording to a single channel [5].  A similar vital 
sign monitoring system that uses TelosB motes has also 
been demonstrated in [19]; however, the fastest signal it 
acquires is a single channel of ECG. The work in this paper 
has been directed toward investigating computationally-
efficient software filters and compression algorithms to 
enable chronic, multi-channel wireless biosignal recording 
with embedded sensors that are hardware and bandwidth 

constrained. 

III. SOFTWARE DESIGNS

A. Neural Signal Filters 
To best leverage the limited processing capabilities of the 

TelosB for the purpose of improving battery life, 
computationally-efficient filters were designed for each 
biological signal of interest to minimize the amount of raw 
data being transmitted from the radio while still providing 
useful biological data.  An excellent example of where 
sensor-level signal processing can yield great bandwidth and 
hence power savings, is detecting and classifying single-
neuron firings when investigating single-unit activity.  Raw 
neural recording and transmission normally requires a 
bandwidth in excess of 40 kbps per channel [24].  Numerous 
methods have been investigated for detecting a neural spike 
(or discharge of a single neuron) to ease network traffic and 
bandwidth requirements. 

The memory and computational resources required by 
each spike-detection algorithm vary from requiring powerful 
desktop PCs [23] to simple analog circuits [22].  Obeid et al. 
[21] have performed an evaluation of neural spike-detection 
algorithms, and concluded that for systems with limited 
computational resources, taking the absolute value of the 
neural signal before applying a threshold (in combination 
with a refractory period) is nearly as effective as applying 
more elaborate energy-based detectors.  In addition, basic 
spike sorting can be achieved by measuring the width and 
height of each individual spike waveform [24].  The spike 
features that neuroscientists use to categorize the spikes are 
illustrated in Figure 1. 

For detecting the spikes, a simple spike-filtering 
algorithm has been designed that continuously buffers the 
signal until its absolute value exceeds a user-defined number 
of standard deviations of the baseline noise [22], which is 
calculated via a sliding-window algorithm, or a user-defined 
threshold.  To avoid noise (such as movement artifacts) from 
being classified as neural spikes, the height, width, and 
trough depths of the detected spike (see Figure 1) are also 
measured against a range of acceptable values pre-
determined by the user.  If the measured spike parameters fit 
within these ranges, the spike is accepted by the filter.  The 
data points representing the spike are compressed via 
adaptive differential-pulse-code modulation (ADPCM) [25], 
and marked for transmission over the radio.  This filtering 
method provides users with a time-reference record of the 
individual spike waveforms.  A second filter passes the 
height and width of each spike along with its time of 
occurrence, which enables the client to statistically 
categorize the spikes based on its features [24]. 

Data transmission from the TelosB takes place in packet 
format.  Signal resolution, filter type, and a time reference 
are included in the packet header.  The transmitted data is 
received by a second TelosB mote which is interfaced with 

Figure 1: Neural spike parameters of interest (adapted from [25]).
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an Emstar-enabled [18] PC-class device.  The gateway 
module parses and packages the biological signals by type, 
which are specified in the transmitted packet headers.  SQL 
queries are generated and transmitted via TCP/IP to an 
archive server. 

B. Data Compression 
In an effort to further reduce the amount of data being 

transmitted from the wireless biosensors, several  
data-compression algorithms were investigated. These 
algorithms were implemented in C, and tested on the pre-
recorded neural dataset to gauge their compression 
efficiency and required computational overhead. A major 
challenge set fourth by the motes is their limited memory 
and computational resources (i.e., the motes cannot perform 
most transforms). In spite of this, we implemented the 
following compression algorithms, and compared them to 
see which would be a suitable candidate for compressing 
neural spikes on a mote: delta encoding, adaptive delta 
encoding (ADPCM), Huffman encoding, LZ77, and LZW 
[25]-[28]. Huffman encoding and LZW are dictionary-based 
algorithms, while the other algorithms can perform 
compression in real time. All of the algorithms, excluding 
ADPCM, are lossless, which means that the uncompressed 
signal is not distorted as a result of the compression. 

IV. SYSTEM TESTING

For testing the spike-filtering characteristics of the 
system, an arbitrary-waveform generator (33120A, Agilent 
Technologies Inc, Palo Alto, CA, USA) was programmed 
with prerecorded spike datasets. The data was originally 
acquired in vivo from freely moving rats using 5 four-
channel MOSFET-input operational amplifiers mounted in 
the cable connector to remove movement artifacts. Data 
were recorded wide band (0.1 Hz to 5 kHz) and sampled at 
10 kHz/channel (16 channels) with 12-bit precision. Spikes 
were obtained by applying a high-pass filter with an f-3dB

frequency of 300 Hz. 
To assess the performance and computational overhead of 

the compression algorithms, each algorithm was applied to 
the spike dataset.  The amount of clock cycles and memory 
consumed was predicted by counting each function call and 
calculating the number of operations and memory required 
to execute each function in the compression algorithm.  

V. RESULTS

A. Neural Signal Filters 
Figure 2(a) displays the original dataset acquired from an 

oscilloscope, which was attached to the output of the signal 

Figure 2: Neural signal (a) applied to the mote, (b) ADPCM-compressed, c) filtered waveforms, (d) spike parameters, and the bandwidth required for 
transmitting them.  To demonstrate the ability of the filter to accept spikes while rejecting unwanted noise (such as motion artifacts, which result in spike-
like patterns in the input signal), the filter parameters (i.e., window of acceptable spike heights, widths, and trough depths which are user programmable) 
were programmed to reject the sixth spike waveform in the dataset—as though it were noise—as it has a very low trough depth.
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generator programmed to output the spike waveforms. 
Figure 2(b) displays the dataset that was acquired and 
transmitted by the TelosB mote at 4000 12-bit samples per 
second followed by ADPCM compression. Figure 2(c) 
displays the transmitted signal when the mote was 
programmed to acquire the neural signal at 8000 12-bit 
samples, and then to detect and transmit time-referenced 
spikes using the absolute-value-thresholding technique 
discussed in [21].  To illustrate the ability of the filter to 
accept spikes in the presence of unwanted noise (such as 
motion artifacts which could result in signals that resemble 
spikes), the filter parameters were chosen such that the 
required signal trough depth exceeded that of the sixth 
spike; hence, the spike was rejected as though it were 
unwanted noise.  The signal parameters extracted from the 
spike waveform are listed in Figure 2(d).  The amount of 
data throughput necessary for transmitting each waveform is 
also labeled in Figure 2. Transmitting the spike parameters 
only (e.g., spike time, peak height, and trough depth) 
requires only 48 bits per spike, thus lowering the required 
bandwidth for transmitting the 1-second signal to only 288 
bits. The normalized correlation of the received ADPCM-
compressed raw spike signal to the auto-correlated original 
waveform is over 99%. 

B. Data Compression 
Figure 3 illustrates the summary performance of the non-

dictionary-based compression algorithms on the spike 
dataset. The number of clock cycles is an estimated value 
based on the number of mathematical operations that need to 
be performed for each compression.  The size of each 
bubble indicates the memory required to execute the 
compression of the dataset.  Compression efficiency is the 
ratio of the size of the original dataset to that of the 
compressed dataset.  It is immediately apparent that delta-
encoding requires a constant amount of memory and clock 
cycles, whether it is 2-bit or 16-bit, which implies that the 
differences between successive data points are encoded as 2-
bit or 16-bit values, respectively. LZ77 yields relatively poor 
compression efficiency, while requiring a modest amount of 
computational overhead.  ADPCM, which was originally 
designed for compressing quantized analog waveforms, 
exhibits the strongest performance, while requiring the most 
amount of computational overhead with respect to the other 
non dictionary-based approaches.  The computational 
overhead required by ADPCM, however, can be provided 
by the TelosB TI MSP430 microprocessor, which is why it 
has selected in this work. 

The dictionary-based compression algorithms require far 
more resources without a significant benefit in compression 

Figure 3: Performance of non-dictionary-based compression algorithms against the spike dataset
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efficiency than ADPCM.  For example, the LZW algorithms 
yielded roughly the same amount of compression efficiency 
as ADPCM while requiring almost triple the RAM and an 
order of magnitude more clock cycles (with dictionary sizes 
and maximum word lengths ranging from 300 and 2 to 1000 
and 10, respectively).  Huffman encoding consumes 
considerably less memory (less than a quarter) while 
yielding less compression efficiency (approximately 1.2) as 
its memory and processor-intensive LZW counterpart, and 
the more efficient ADPCM compression algorithm. 

VI. CONCLUSION

In this work, we have demonstrated high-frequency 
biological signal acquisition using embedded sensors that 
are hardware and bandwidth constrained.  The wireless 
biological sensors leverage the signal-filtering capabilities of 
the COTS TelosB wireless processor modules on which they 
are based.  By applying efficient filters that are designed 
based on existing methods used for interpreting biological 
signals, and the ADPCM compression algorithm, power 
efficiency has been improved by a factor of up to 400, which 
results in vastly increased battery life, hence lower system 
maintenance. 
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