
   Abstract—. This paper proposes a novel algorithm for speckle 
reduction in medical ultrasound imaging while preserving the 
edges with the added advantages of adaptive noise filtering and 
speed. We propose a nonlinear image diffusion algorithm that 
incorporates two local parameters of image quality, namely, 
scatterer density and texture-based contrast in addition to 
gradient, to weight the nonlinear diffusion process. The 
scatterer density is proposed to replace the existing traditional 
measures of quality of the ultrasound diffusion process such as 
MSE, RMSE, SNR, and PSNR. This novel diffusion filter was 
then implemented using backpropagation neural network for 
fast parallel processing of volumetric images. The experimental 
results show that weighting the image diffusion with these 
parameters produces better noise reduction and produces a 
better edge detection quality with reasonable computational 
cost. The proposed filter can be used as a preprocessing phase 
before applying any ultrasound segmentation or active contour 
model processes. 

I. INTRODUCTION

edical ultrasound is a mode of medical imaging that 
has a wide array of clinical applications, both as a 

primary modality and as an adjunct to other diagnostic 
procedures [1]. The clinical utility of ultrasound imaging is 
in large part due to three characteristics. These are that 
ultrasound is a real-time modality, does not utilize ionizing 
radiation, and provides quantitative measurement and 
imaging of blood flow. However, an inherent characteristic 
of ultrasound imaging and any type of coherent imaging in 
general, is the presence of speckle noise. Speckle is a 
random interference pattern in an image formed with 
coherent radiation of a medium containing many sub-
resolution scatterers. The texture of the observed speckle 
pattern does not correspond to underlying structure. Speckle 
has a negative impact on ultrasound imaging. Bamber and 
Daft show a reduction of lesion detectability of 
approximately a factor of eight due to the presence of 
speckle in the image [2]. This radical reduction in contrast 
resolution is responsible for the poorer effective resolution 
of ultrasound compared to X-ray and MRI. 
   Therefore, the methods of speckle reduction have been 
established in the past 40 years as one of the active research 
fields in medical ultrasound information processing [3].  
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Adaptive filtering for speckle reduction has been studied by 
[7] in order to reduce speckles in ultrasound images. 
However, denoising techniques should not only reduce the 
noise, but do so without blurring or changing the location of 
the edges. Hence, new techniques, based on the use of 
partial differential equations, have been extensively studied 
since the early work of Perona and Malik in 1987 [8] and 
others [9-16].  The idea behind the use of the diffusion 
equation in image processing arose from the use of the 
Gaussian filter in multi-scale image analysis where an image 
is convolved with a Gaussian filter. If the diffusivity 
function is a constant, i.e., independent of image positions 
(x, y) or time (t), it leads to a linear diffusion equation [8], 
with a homogeneous diffusivity. In this case, all locations in 
the image, including the edges are smoothed equally. This 
is, of course, undesirable, and a simple improvement would 
be to change diffusivity with the location x and y in the 
image, thus converting the equation into a linear diffusion 
equation with non-homogeneous diffusivity. If the 
diffusivity function is image dependent, then the linear 
diffusion equation becomes a non-linear diffusion equation 
[10-16]. For example, by using a function that was based on 
the derivative of the image at time t, Perona and Malik [9] 
were able to control the diffusion near the edges in the 
image.  Since the diffusivity is a scalar, terminology from 
partial differential equations refer this case as isotropic non-
linear diffusion.  Anisotropic diffusion is the case where the 
diffusivity function is a tensor-valued function, varying with 
both the edge location and its orientation [10-16]. Thus, 
diffusion across the edge can be prevented while allowing 
diffusion along the edge. This prevents the edge from being 
smoothed during the denoising process. There are several 
factors that must be considered in the use of diffusion-based 
techniques for denoising. These include the choice of the 
diffusivity function, setting any parameters used in the 
diffusivity function [11-14], the method of discretization of 
the PDE, the options used in the solution of the PDE such as 
the time for which it is evolved, the method used for solving 
the linear system of equations, etc.  Mean square error and 
signal to noise ratio were used for evaluating denoising 
process [17-18].  Neural networks for image processing 
were investigated in the literature by several authors in order 
to implement a certain nonlinear function or transform [20-
24]. Signal-to-noise ratio (SNR) and Peak signal-to-noise-
ratio image measure (PSNR) derived from the root mean 
squared error (RMSE) as image quality measures in 
compression, representation, and standards were described 
in details in [29]. Higher quality measures do not always 
mean better visual quality of enhanced edges and denoised 
structures.
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   Our paper proposes novel ultrasound image geometry, 
quality and noise parameters that can define ultrasound 
image quality measures better than the traditional ones and 
are used to weight a nonlinear diffusion filter for speckle 
reduction. The resultant diffusion filter combines the 
advantages of locally adaptive filtering and computational 
speed.  The rest of this paper is organized as follows. 
Section 2.1 gives a brief introduction to the nonlinear 
diffusion filtering scheme and its applicability in image 
denoising. Then, in Section 2.2, two image quality and 
noisiness measures are introduced to produce a weighted 
diffusion scheme that performs better than existing ones. 
The experimental analysis and results are summarized in 
Section 3. Finally, Section 4 gives conclusions and 
suggestions for future work to speed up the diffusion 
process.

II. WEIGHTED NONLINEAR DIFFUSION IN ULTRASOUND 
IMAGING

A. Nonlinear diffusion in image denoising 

   Diffusion is intuitively regarded as a physical process that 
equilibrates concentration differences without creating or 
destroying mass. This physical observation can be easily 
cast in a mathematical formulation. If u is the concentration 
and D is the diffusion tensor, then the diffusion equation is 
given as:  

)( uDdivut .                                                         (1) 
In image processing we may identify the concentration u
with the gray value at a certain location. If the diffusion 
tensor D is constant over the whole image domain, one 
speaks of homogeneous diffusion, and a space-dependent 
filtering is called inhomogeneous. Often the diffusion tensor 
is a function of the differential structure of the evolving 
image itself. Such a feedback leads to nonlinear diffusion
filters.
   The diffusion-based filter calculates a filtered image 
u(x,y,t) of the original noisy image f(x,y) as a solution to the 
nonlinear diffusion equation as shown: 

)),(( uyxDdivut                                          (2) 
with the original image f(x,y) as the initial state: 
u(x,y,0)=f(x,y),                                                    (3)
and reflecting boundary conditions on the image boundary: 

: 0nu ,                                                                           (4) 
where n denotes the normal to the image boundary. The 
nonlinear diffusivity function D(x,y) is usually given as a 
strictly decreasing function of the magnitude of the gradient.  

B. Image quality measures for weighting nonlinear diffusion 

   Perona and Malik [9] suggested incorporating the image 
gradient into image diffusion-based filtering scheme to 
produce adaptive edge-preserving image filters. Since then, 
many researchers [10-16] have suggested improvements and 
modifications related to the form of the diffusivity function 

and the terms of the diffusion PDE [17-18]. However, 
diffusion schemes that depend on other factors of physical 
importance haven’t received much attention in literature. 
Here, we investigate the effect of three important image 
features on the performance of ultrasound image diffusion 
scheme. The features, namely the image gradient, the 
texture-based contrast, and the ultrasound scatterer density 
parameter, describe the geometric, resolution, and noise 
properties, respectively.  

B.1. Image Gradient 

Gradient edge detection is the most widely used technique 
to weight the nonlinear diffusion filters. Here, the image is 
convolved with only two kernels, one estimating the 
gradient in the x-direction, Gx, the other is the gradient in 
the y-direction, Gy. The absolute gradient magnitude is then 
given by:  

2 2| | x yG G G ,                                                (5)                      

and is often approximated with  
| | | | | |x yG G G .                                                             (6)

B.2. Texture-Based Contrast 

Characteristics of the second order describe interactions of 
neighbors in the texture. Large set of characteristics is 
derived from the so-called gray level cooccurence matrix. 
Cooccurrence matrices, originally called gray-tone spatial 
dependency matrices, were introduced by Haralick et al. [4], 
who used them to define textural properties of images. 
These texture features has been used by the first author to 
construct a part of the feature vector used in diffused liver 
tissue characterization classification problem [25-28]. These 
second-order matrices are defined as follows. Given a 
position operator P(i, j), let A be a n n matrix whose 
element A[i][j] is the number of times that points with gray 
level (intensity) g[i] occur, in the position specified by P,
relative to points with gray level g[j]. Let C be the n n
matrix that is produced by dividing A with the total number 
of point pairs that satisfy P. C[i][j] is a measure of the joint 
probability that a pair of points satisfying P will have values 
g[i], g[j]. C is called a cooccurrence matrix defined by P. In 
particular, contrast features derived from the gray-scale 
cooccurrence matrices are defined as: 

1 1

0 0,

M M
iji j i j

i j C                                             (7) 

These features represent a good measure for the contrast 
resolution of ultrasound images that can be used to weight 
the diffusion filters of ultrasound images.

B.3. Ultrasound Scatterer Density parameter 

The Rayleigh distribution models the scatterer density 
where a large (infinite) number of uniformly distributed 
small size scatterers (compared to the wavelength of the 
ultrasound wave) are present. But this scenario is satisfied in 
very limited situations. In general, the “effective” number of 
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scatterers is finite. Thus there is a need to model the 
situation with smaller scatterer density. A general 
distribution that accounts for small scatterer density was 
studied by V. Dutt in [5,19]. The envelope of the received 
backscattered signal A can be evaluated as:

1

1( ) 2 ( )
2
A bp A K bA ,                                          (8)

where
2

4
{ }

b
E A

and K () is the modified Bessel function 

of the second kind of order .
   This distribution is the so-called the K distribution. It gives 
a generalization of the Rayleigh distribution to account for 
small scatterer density. Dutt shows that the parameter  of 
the envelope of the amplitude density function could be 
treated as the “effective” number of scatterers per resolution 
cell. So, we can propose to consider this parameter to be a 
measure of the speckle noisiness of the ultrasound images.
Next, we show how to evaluate this parameter from the K
distribution moments.  
The moments of K distributed data have a closed form 
expression as: 

2 / 2

/ 2

(2 ) (1 / 2) ( / 2){ }
( )

E A . (9)

   Because the moments have closed form expressions, one 
can devise methods of estimating the parameters of K
distributed data based on sample moments estimated from 
the data. Several methods have been proposed to estimate 
from normalized moments [6]. A method that employs lower 
order moments is method of the second- and fourth-order 
moments. This method is as follows. Using (9), the 
normalized ratio of the fourth moment to the second moment 
squared can be written as:  

4

2 2

{ } 12(1 )
{ }

E A
E A

.                                      (10)                                                                                

This equation suggests an estimate for  using the sample 
fourth-order moment, 4, and second-order moment, 2 , as: 

4

2

2ˆ
2

,                                                                         (11)

where the sample moments are given by: 

1

1 N

i
i

A
N

,                                                           (12)                                                               

where the Ai are the N samples of the envelope of the 
received backscattered signal used to estimate the 
parameters of the K distributed data. 

III. RESULTS

   We investigated the performance of nonlinear diffusion 
filters on reducing the speckle noise in ultrasound images 
(Liver image part acquired at 3.5Mhz showing hepatic 
vessels) using all possible combinations of three factors: the 

image gradient, the texture-based contrast, and the scatterer 
density. That is, we tested the performance using each factor 
alone, two at a time, and the three together. Suitable 
performance measures for evaluating the proposed nonlinear 
diffusion algorithm are the time evolution of the scatterer 
density in the whole image (a measure of noise removal 
property), the time evolution of the Canny edge detector 
map (a measure of edge detection and preservation 
property), and the visual interpretation.  

A. Gradient weighted diffusion 

Figs.1-b and 3 show the results of using the gradient only 
to weight diffusion of the noisy image in 1-a. We note that 
the noisy image has experienced progressive decrease in the 
scatterer density as time evolves (From 0.4445 to 0.2567). In 
addition, applying a standard edge detector, namely the 
Canny detector, the edge map proceeds from a truly vague 
map to a meaningful one. This result represents the basic 
Perona-Malik scheme against which the proposed filters are 
tested.  

Fig.1. Original image (a), diffused using gradient only (b), using scatterer 
density only (c), using contrast only (d). 

B.  Scatterer Density weighted diffusion 

   Figs.1-c and 3 show the results of using the scatterer 
density only to weight diffusion of the noisy image in 1-a. 
We realize that the noisy image has experienced progressive 
decrease in the scatterer density as time evolves (From 
0.4445 to 0.2579) but the final overall scatterer density 
(0.2579) is higher than that obtained using the gradient only. 
Also, the resulting edge map is slightly enhanced. This result 
shows us that the diffusion using the scatterer density can 
essentially perform as well as the diffusion depending on the 
gradient only. However, the gradient is an indispensable 
factor that should be present in the diffusivity with any new 
parameters for diffusion weighting. 

C.  Gradient and Scatterer Density weighted diffusion 

   In Figs.2-b and 3, we show the results of combining the 
gradient magnitude and scatterer density as multiplied 
factors into the diffusivity function. Then, we note that the 
noisy image has experienced more decrease in the scatterer 
density as time evolves (From 0.4445 to 0.2514) even more 
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than that obtained using the gradient only. As well, the 
resulting edge map is enhanced remarkably. The result 
verifies our suggestion that the incorporation of the scatterer 
density in the diffusivity produces better diffusion results 
since the scatterer density can be regarded as a speckle noise 
measure. 

We conclude that by incorporating the gradient magnitude 
multiplied by the scatterer density into the diffusivity 
function, we gain better performance – in terms of noise 
removal and edge preservation – than that obtained by any 
of the two factors alone. Fig.3. summarizes the time 
evolution of the overall scatterer density of the ultrasound 
image through diffusion using the gradient only, the 
scatterer density only, and the gradient multiplied by the 
scatterer density. Clearly, the gradient-times-scatterer-
density combination displays the most reduction in scatterer 
density. 

Fig.2. original image (a), diffused using gradient x scatterer density (b), 
using gradient x contrast (c), using gradient x scatterer density x contrast 
(d).

Fig.3. Time evolution of the overall scatterer density of the ultrasound 
image through diffusion using the gradient only, the scatterer density only, 
and the gradient multiplied by the scatterer density. 

D. Contrast weighted diffusion 

Figs.1-d and 4 show the results of using the scatterer 
density only to weight diffusion of the noisy image in 1-a. 
The noisy image has experienced progressive decrease in the 
scatterer density as time evolves (From 0.4445 to 0.2651) 
but the final overall scatterer density (0.2651) is higher than 
that obtained using either the gradient or the scatterer 
density. Also, the resulting edge map is slightly enhanced. 

We should not incorporate the contrast alone in the 
diffusivity function.  

E. Gradient and Contrast weighted diffusion 

In Figs.2-c and 4, we show the results of using a 
multiplicative combination of the gradient magnitude and 
the contrast to weight the diffusion filter of the noisy image 
in 2-a. Then, we note that the noisy image has experienced 
more decrease in the scatterer density as time evolves (From 
0.4445 to 0.2528) even more than that obtained using the 
gradient only. As well, the resulting edge map is enhanced 
slightly. Fig.4. summarizes the time evolution of the overall 
scatterer density of the ultrasound image through diffusion 
using the gradient only, the contrast only, and the gradient 
multiplied by the contrast. Clearly, the gradient-times-
contrast combination displays the most reduction in scatterer 
density. 

Fig.4. Time evolution of the overall scatterer density of the ultrasound 
image through diffusion using the gradient only, the contrast only, and the 
gradient multiplied by the contrast. 

F. Gradient, Scatterer Density, and Contrast weighted 
diffusion 

In Figs.2-d and 5, we examine the effect of multiplying the 
gradient magnitude, the scatterer density and the contrast. 
We note that the noisy image has experienced more decrease 
in the scatterer density as time evolves (From 0.4445 to 
0.2497) even more than any other combination of factors. 
As well, the resulting edge map is enhanced slightly more 
than the previous results. We conclude that incorporating the 
gradient magnitude multiplied by the contrast and the 
scatterer density into the diffusivity function, we gain the 
best performance – in terms of noise removal and edge 
preservation – than that obtained by any other combination 
of factors. Fig.5. summarizes time evolution of the overall 
scatterer density of the image through diffusion using the 
gradient only, the gradient multiplied by the scatterer 
density, the gradient multiplied by the contrast, and the 
gradient multiplied by both of the scatterer density and the 
contrast. The all-factor combination has the lowest overall 
scatterer density and best edge map. 
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G. Scatter density as a measure for diffusion image quality 

We calculated the traditional quality measures (RMSE, 
SNR, and PSNR) for the results of sections A-G. Table I 
shows the results of the RMSE, SNR, and PSNR in addition 
to the scatterer density we propose it to replace these 
traditional measures in ultrasound denoising process. 
However, the higher traditional measures do not always 
mean better quality. Scatterer density is better describing the 
quality of the images as there is a good relationship between 
the edge sharpness map and the value of the scatterer density 
as shown from sections A-G, the lower scatterer density the 
sharpened the detected edge map. 

TABLE I
COMPARISON BETWEEN  TRADITIONAL QUALITY MEASURES AND THE 

PROPOSED SCTTERER DENSITY MEASURE FOR ULTRASOUND DENOISING

Weighting Factors RMSE SNR(dB) PSNR(dB) 
Gradient 0.0471 4.368 26.538 0.2567 
Scatter Density 0.0475 4.276 26.462 0.2579 
Contrast 0.0464 4.527 26.658 0.2651 
Gradient, Scatter 
Density 

0.0484 4.039 26.303 0.2514 

Gradient, Contrast 0.0477 4.192 26.424 0.2528 
Gradient, Scatter 
Density, Contrast 

0.0488 3.921 26.229 0.2497 

     The actual value of the traditional quality measures is not 
meaningful, but the comparison between two values for 
different diffused or reconstructed images gives one 
measure of quality. Using PSNR measure in image 
reconstruction, the MPEG committee used an informal 
threshold of 0.5 dB PSNR to decide whether to incorporate a 
coding optimization since they believed that any 
improvement of that magnitude would be visible. However, 
since the differences in PSNR values do not exceed 0.5 dB, 
we have an enhanced denoised visible image of good edge 
map sharpness that can be suitable as a preprocessing step 
for further segmentation or active contour processes of 
organs, tumors, or vessels. 

H. Neural-Network implementation for proposed diffusion 

   We started to implement our novel diffusion filter using a 
standard multilayer backpropagation neural network. In this 
parallel-processing implementation, we trained the network 
using information extracted from the resulting diffusion 
filter. Taking the input to the network as a given noisy 
image shown in Fig.6.a and its targeted output as the one 
shown in Fig.6.b, we have got the following results as 
shown in Fig.7. We have extracted the grayscale, contrast, 
gradient, and scatterer density features for a 5*5 mask size 
and we used a combination of these 4 features as an input to 
the network of one hidden layer, 10 hidden-layer nodes, tanh 
sigmoidal activation function, 0.6 learning factor, 0.75 
momentum term, and 10000  training epochs. Table II 
summarizes the NN output results in terms of the mean 
squared error (MSE) and the associated overall scatterer 
density measure. Fig.7. show this NN output for a test image 

of different grayscale information for another region in liver 
B-mode ultrasound. The shown results are very satisfactory 
for a 3D volumetric processing. These promising results 
suggest using this NN diffusion filter implementation for the 
parallel processing of a 3D image, which takes very short 
time in testing compared to the large time needed for 5 
iterations of the diffusion filter.    

Fig.5.  Time evolution of the overall scatterer density of the image through 
diffusion using the gradient only, the gradient multiplied by the scatterer 
density, the gradient multiplied by the contrast, and the gradient multiplied 
by both of the scatterer density and the contrast. 

Fig.6. NN training using a noisy image as input, its diffused target image, 
and actual output image using the grayscale, contrast, gradient, and scatterer 
density features as input, and the output image is the grayscale value of the 
diffusion process. 

Fig.7. NN testing using a noisy image as input and tested result using the 
grayscale, contrast, gradient, and scatterer density features as input, the 
tested output image is the grayscale output from the NN test. 
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Using Gradient, Scatter Density, Contrast, and Gray-level as 
features for training with images of Fig. 6 and testing with 
images of Fig. 7, Table II and Table III show the 
comparison of the resulted quality measures between the 
input/target/test. Table III shows a better quality measures 
between the target and test image of Fig. 7 where we trained 
the network with the images of Fig. 6 and test the capability 
of the network to perform the diffusion process using 
images of Fig. 7. 

TABLE II
TRAINING MSE, TESTING MSE, AND OVERALL SCATTERER DENSITIES FOR 

NETWORKS WITH DIFFERENT INPUT FEATURES

Network Input Features Training 
MSE

Testing
MSE

Overall
Scatter
Density

Gradient, Gray-level 8.7526 10.0863 0.1108
Scatter Density, Gray-level 9.0311 10.1907 0.0933
Gradient, Scatter Density, 
Gray-level

8.8063 10.0642 0.1019

Contrast, Gray-level 8.6903 9.9840 0.1020
Gradient, Contrast, Gray-
level

8.9405 10.0975 0.1141

Gradient, Scatter Density, 
Contrast, Gray-level

8.4961 9.8367 0.1275

TABLE III
IMAGES RMSE, SNR, AND PSNR COMPARISON  OF FIG. 7

Images RMSE SNR(dB) PSNR(dB) 
Between Input & Target 0.0478 3.164 
Between Input & Test 0.0444 6.402 
Between Target & Test 0.0322 6.567 

26.411
27.045
29.818

IV. CONCLUSIONS

   First, we proposed defining the scatterer density as a 
measure for denoising and image quality instead of the 
traditional MSE, RMSE, SNR, and PSNR where they do not 
have any visual meaning to judge a better ultrasound image 
quality. Second, we proposed using this scatterer density 
parameter in the nonlinear diffusion process alone or with 
gradient and/or contrast. We investigated the performance of 
nonlinear diffusion filters on reducing the speckle noise in 
ultrasound images using all possible combinations of these 
three factors: the image gradient, the texture-based contrast, 
and the scatterer density. From these experiments, we can 
confirm that the introduction of the contrast and the scatterer 
density into the diffusion process increases the good 
performance of the nonlinear diffusion algorithm in 
removing the speckle noise and preserving the important 
structures and edges of the image. The two new parameters 
introduced together to weight the nonlinear diffusion 
process make sense because they have a strong physical 
meaning, especially in ultrasound images. This method can 
be used in denoising other modality imaging such as MRI 
and CT. The proposed method showed a better quality of 

diffusion and better edge map where this method can be 
used further as a preprocessing phase before applying any 
segmentation or active contour model processes. Other 
factors of relative importance in modeling the speckle noise 
density and measuring the image quality could be tested 
similarly for potential use as weighting parameters of the 
ultrasound nonlinear diffusion filters. However, the overall 
computational time (~10 seconds for 128*128 image for 5 
iterations) is long for volumetric processing in 3D. The bulk 
of this time is consumed in calculating the cooccurrence 
matrix, the gradient, and the scatterer density parameters. In 
calculating these parameters, we used traditional methods 
for calculation; despite fast accelerated computational 
methods exist in the literature, since our main task was to 
investigate the introduction of scatterer density in the 
evaluation of denoising process and weighting the nonlinear 
diffusion process. In the neural-network implementation, we 
used a noisy image as the input, its diffused image as the 
output then we tested the network with the different 
remaining noisy slices that were not used in network 
training and even from different images with different 
structures and different echographic patterns. Thus, we can 
accelerate the nonlinear diffusion process by implementing 
it as a neural filter based on multilayer backpropagation 
neural networks which are time-efficient in processing 
different volumetric slices. 
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